X.F		
Name:		

$$A_f = R\left(\frac{(1+i)^n - 1}{i}\right) \quad \text{Sowings}$$

$$A_p = R\left(\frac{1 - (1 + i)^{-n}}{i}\right) \quad \text{mtg} \quad \text{cans}$$

1. Suppose you want to buy a \$30,00 ar with a 5-year loan at 4. 5% annual interest paying 10% down.

a. How much do you pay toward the loan on the car each month?

an the car each month?
$$27000 = R \left(1 - \left(1 + \left(\frac{045}{12} \right) \right)^{-(5 \cdot 12)} \right)$$

b. What is the total monthly payment on this car? How much interest did you pay?

$$(503.36)$$
 $(60) = 30201.69$

$$-27000$$

$$= 33201.69 \text{ in interest}$$

- 2. In the summer of 2014, the average listing price for homes for sale in the Hollywood Hills was \$2,663,995.
 - a. Suppose you want to buy a home at that price with a 30-year mortgage at 5. 25% annual interest, paying ${f 10}\%$ as a down payment. What is your total monthly payment on this house?

$$2397595.50 = R\left(1 - \left(1 + \left(\frac{.0525}{12}\right)\right)^{-(301)}\right)$$

mtg amt: 2397595.50

How much is paid in interest over the life of the loan?

4766259.60 (total pd)

$$A_f = R\left(\frac{(1+i)^n - 1}{i}\right)$$

$$A_p = R\left(\frac{1 - (1+i)^{-n}}{i}\right)$$

3. Suppose you want to buy a \$200, 000 home with a 30-year mortgage at 4.5% annual interest paying 10% down.

What is the monthly payment on the house loan?

$$180,000 = R\left(1 - \left(1 + \left(\frac{.045}{12}\right)\right)^{-\frac{30-12}{12}}\right)$$

4. Suppose you made monthly \$25 deposit into an account that pays 9% APR compounded monthly. What is the value of the account after 47 years???

$$H_{f} = 25 \left(\frac{(1+(\frac{09}{12})^{(12.47)} - 1}{(\frac{09}{12})^{(12.47)}} \right) = 522,137.13$$

How much of your own money did you invest and how much interest did you earn?

(over)

$$A_f = R\left(\frac{(1+i)^n - 1}{i}\right)$$

$$A_p = R\left(\frac{1 - (1 + i)^{-n}}{i}\right)$$

5. Suppose that you would like to buy a home priced at \$200,000. You will make a payment of 10% of the (.10) -> 180000 purchase price.

Compute the total monthly payment for a 15-year mortgage at 4.8% annual interest.

$$180000 = R\left(\frac{1-(1+\frac{.048}{12})^{-(15-12)}}{180000} = R(128.137.)\left(\frac{.048}{12}\right)$$

$$P = \{14511 = -15\}$$

b. Calculate the total interest paid over the life of the loan.

(18) months) =

SAVINGS
$$A_f = R\left(\frac{(1+i)^n - 1}{i}\right)$$

MORTGAGES/CARS/LOANS
$$A_p = R\left(\frac{1 - (1 + i)^{-n}}{i}\right)$$

- Suppose that you would like to buy a home priced at \$200, 000. You will make a payment of 10% of the purchase price.
 - a. Compute the total monthly payment for a ${\bf 15}$ -year mortgage at ${\bf 4.8\%}$ annual interest.

b. Calculate the total interest paid over the life of the loan.

6. Another way to determine the monthly payment, **m**, for a certain principal, **P**, at a specific monthly rate, **r**, is the use the formula below. **n**, represents the number of payment it takes to pay off the loan.

$$m = \frac{P \bullet r}{1 - (1 + r)^{-n}}$$

a) Calculate the monthly payment needed to pay off a \$200, 000 loan at 4% annual interest over a 20 year period.

$$m = \frac{200000 \cdot (\frac{04}{12})}{1 - (1 + \frac{04}{12})^{-240}}$$

b) Do the same calculation but now make the pay off period 30 years instead of 20 years. 1211.96 How much less is the monthly payment? 30(12) = 360 - 954.83

$$M = \frac{200000 \cdot \left(\frac{.04}{12}\right)}{1 - \left(1 + \frac{.04}{12}\right)^{-360}} = \boxed{954.83}$$

\$257.13 less

but _..

1211.96 (240 pyrots) = 2908 70,40 - 200000 = interest = 90,870.40 954.83 (360 pynts) = 343738.80 - 200000 = 143,738.80 nterest 343738.80 52,868.40 - 290870.40

52868.40

more interest! just to lower your monthly payment