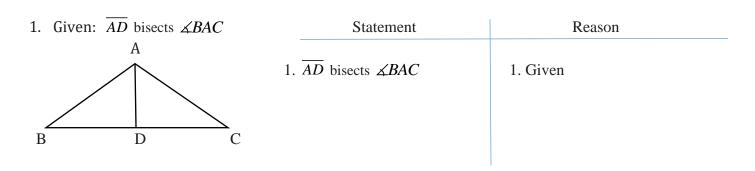
Review of Proofs

Date	Classwork	Assignment
Thursday, May 2	Unit 13 Test	
Friday, May 3	Proofs Review – Triangle Congruence and CPCTC	Proofs Review #1
Monday, May 6	Proofs Review – Parallel Lines and +/-	Proofs Review #2
Tuesday, May 7	Proofs Review – Quadrilaterals & Coordinate Proofs	Proofs Review #3
Wednesday, May 8	Proofs Review – Similarity	Proofs Review #4
Thursday, May 9	Proofs Review – Circle Proofs	Proofs Review #5
Friday, May 10	Proofs Review – Circle Proofs	Regents Review #1 (White)

PROOF REVIEW

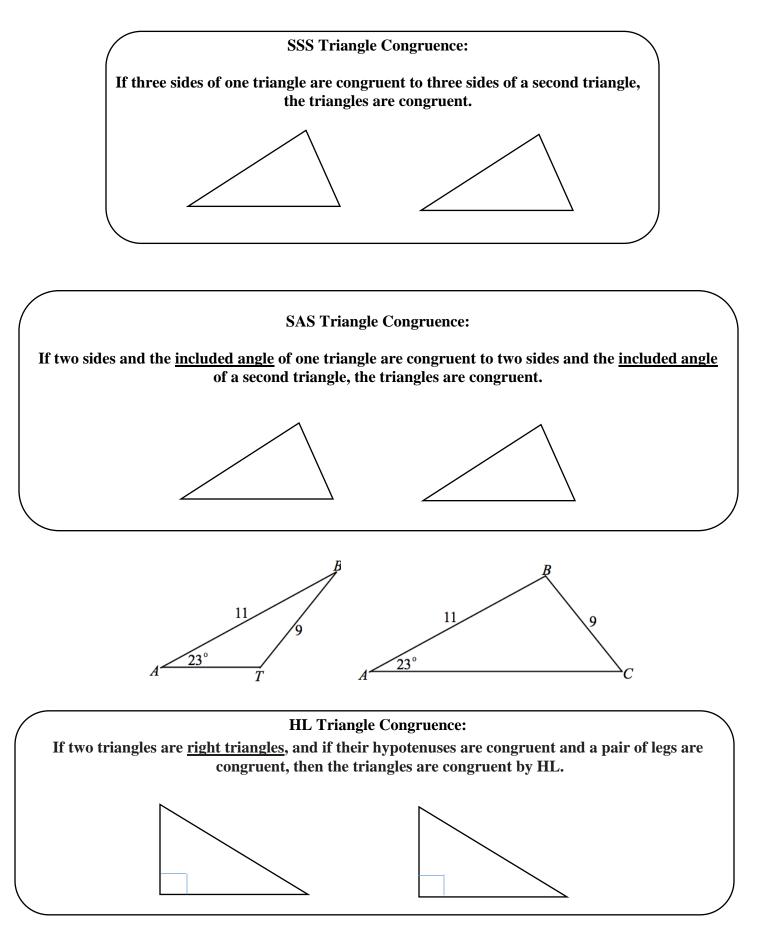
A midpoint divides a segment into two congruent segments. An angle bisector divides an angle into two congruent angles. If two sides of a triangle are congruent, then their opposite angles are congruent. If two angles of a triangle are congruent, then their opposite sides are congruent.

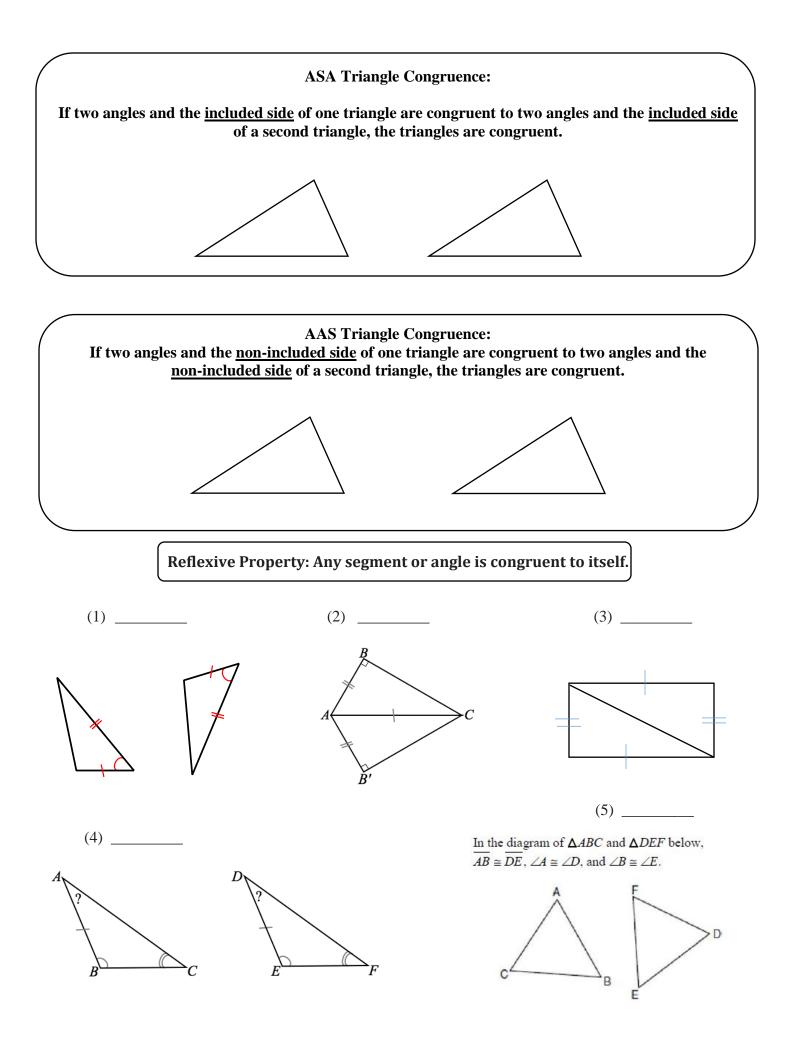


2. Given: D is the midpoint of \overline{BC}	Statement	Reason
A B D C	1. D is the midpoint of \overline{BC}	1. Given

3. Given: $\overline{AB} \cong \overline{AC}$	Statement	Reason
A B D C	1. $\overline{AB} \cong \overline{AC}$	1. Given

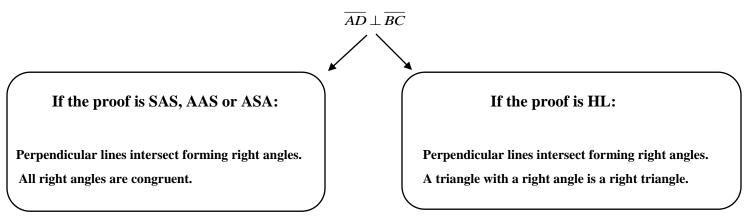
4. Given: $\measuredangle B \cong \measuredangle C$	Statement	Reason
A B D C	1. $\measuredangle B \cong \measuredangle C$	1. Given

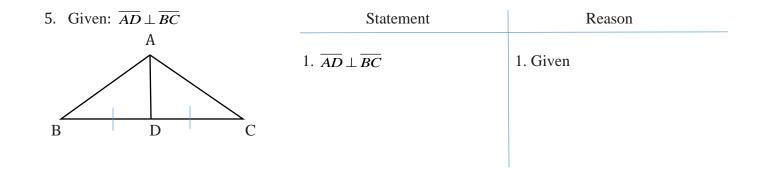




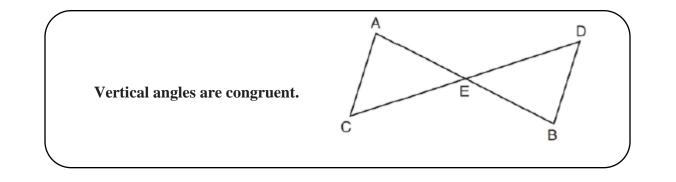
Perpendicular Segments

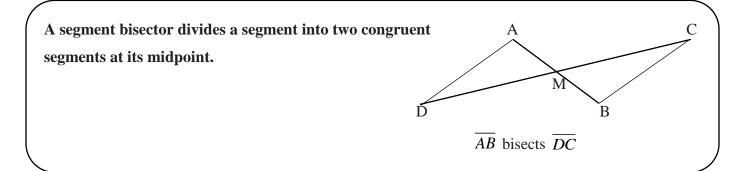
Perpendicular segments always form right angles, but depending on whether the proof is HL or SAS, AAS, or ASA, the next step will be different.





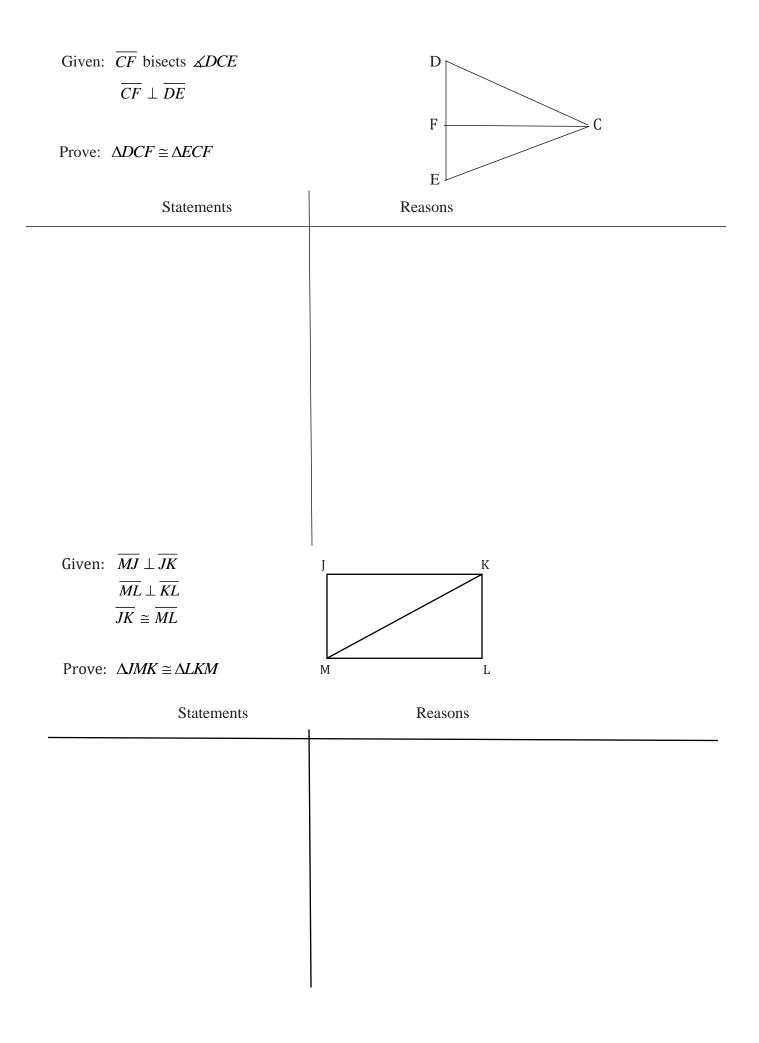
6. Given: $\overline{AD} \perp \overline{BC}$	Statement	Reason
A B D C	1. $\overline{AD} \perp \overline{BC}$	1. Given





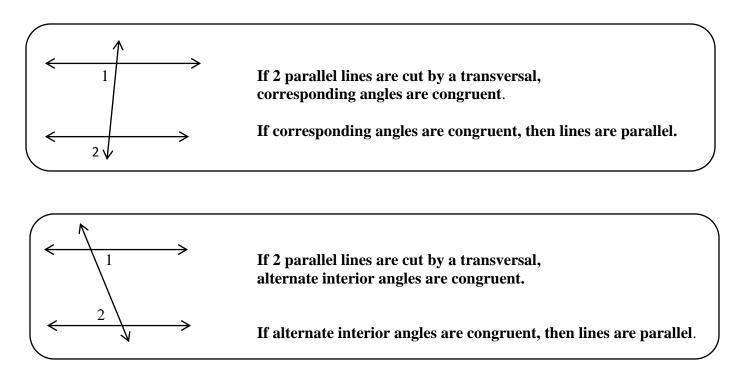
7. Given: \overline{AB} bisects \overline{DC} $\measuredangle A \cong \measuredangle B$

Statements	Reasons
1. \overline{AB} bisects \overline{DC}	1. Given



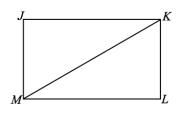
Corresponding sides of congruent triangles are congruent Corresponding angles of congruent triangles are congruent.

	Given: $\overline{PQ} \cong \overline{RS}$ $\overline{PQ} \perp \overline{QS}$ $\overline{RS} \perp \overline{QS}$ Prove: $\overline{PS} \cong \overline{RQ}$	P Q RS
	Statements	Reasons
1.	$\overline{PQ} \cong \overline{RS}$, $\overline{PQ} \perp \overline{QS}$, $\overline{RS} \perp \overline{QS}$	1. Given

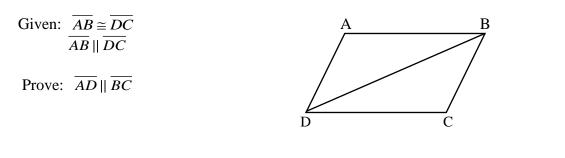


Given:	$\overline{JK} \parallel \overline{ML}$
	$\overline{JM} \parallel \overline{KL}$

Prove: $\measuredangle J \cong \measuredangle L$



Sta	atements	Reasons
1. $\overline{JK} \parallel \overline{ML}$ $\overline{JM} \parallel \overline{KL}$	1.	Given

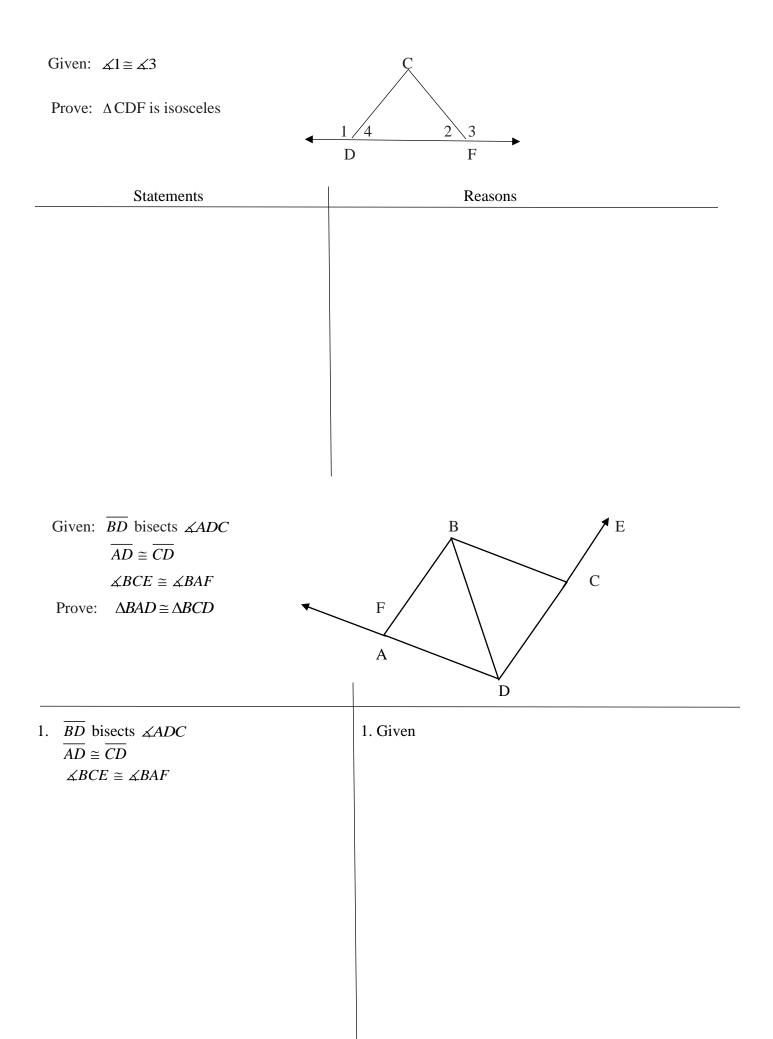


Statements	Reasons
1. $\overline{AB} \cong \overline{DC}$ $\overline{AB} \parallel \overline{DC}$	1. Given
G	
	oplementary Angles

Angles on a line are supplementary

1/2

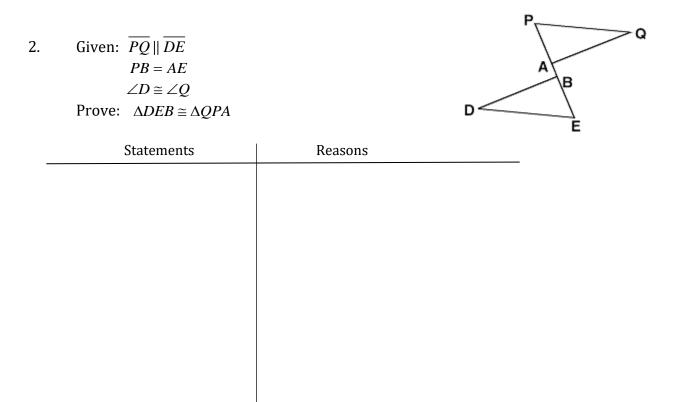
Supplements of congruent angles are congruent.



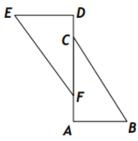
ADDITION AND SUBTRACTION OF SEGMENTS & ANGLES

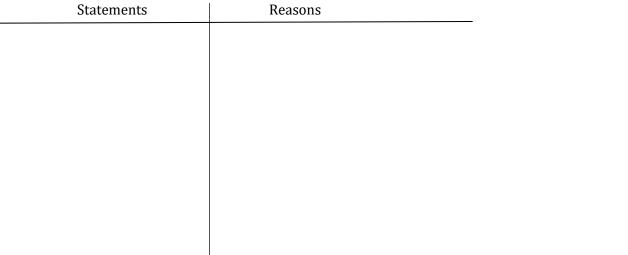
If a pair of congruent segments/angles are added to another pair of congruent segments/angles, then the resulting segments/angles are congruent. Similarly, if a pair of congruent segments/angles are subtracted from a pair of congruent segments/angles, then the resulting segments/angles are congruent.

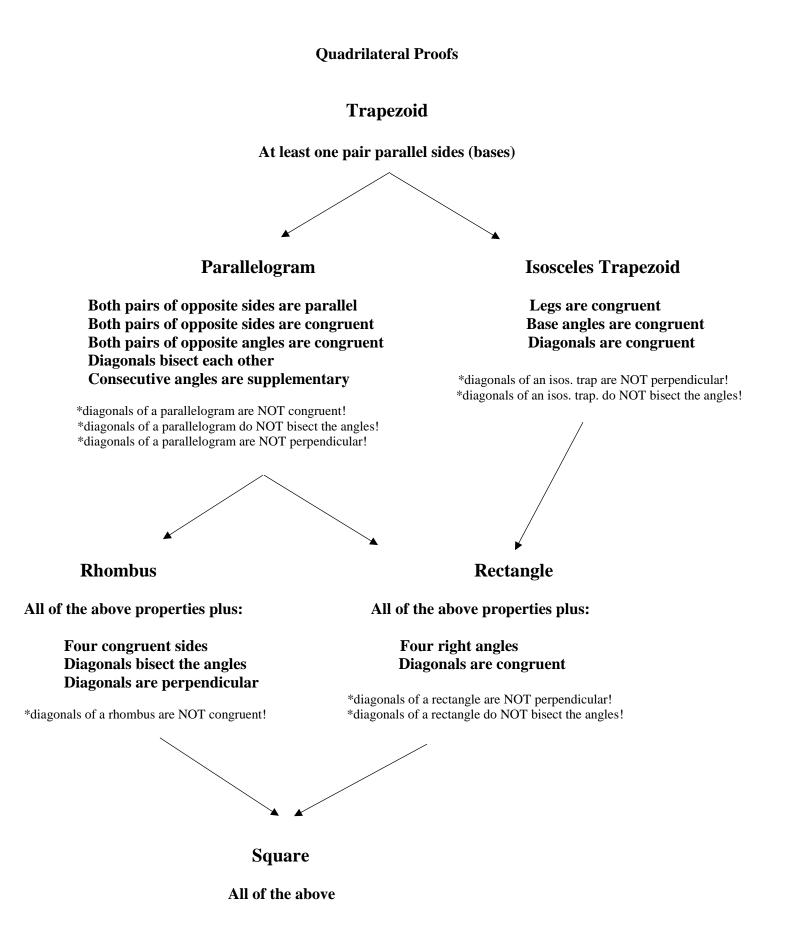
<i>Given:</i> \overline{ABCD} with $\overline{AB} \cong \overline{CD}$	Statements	Reasons
<i>Given: ABCD</i> with $AB = CD$ <i>Prove:</i> $\overline{AC} \cong \overline{BD}$	1. $\overline{AB} \cong \overline{CD}$	1. Given
Hove. AC = BD	2. $\overline{BC} \cong \overline{BC}$	2. Reflexive Property
A B C	3. AB + BC = CD + BC	C 3. Addition Property
	4. $AC = AB + BC$ BD = CD + BC	4. A whole ='s the sum of its parts
	5. $\overline{AC} \cong \overline{BD}$	5. Substitution
	Statements	Reasons
Given: \overline{ABCD} with $\overline{AC} \cong \overline{BD}$	1. $\overline{AC} \cong \overline{BD}$	1. Given
<i>Prove:</i> $\overline{AB} \cong \overline{CD}$	2. $\overline{BC} \cong \overline{BC}$	2. Reflexive Property
A B C	$\begin{array}{c} \bullet \\ D \end{array} \qquad \begin{array}{c} 3. AC = AB + BC \\ BD = CD + BC \end{array}$	3. A whole ='s the sum of its parts
	4. $AB + BC = CD + Bc$	C 4. Substitution
	5. $\overline{AC} \cong \overline{BD}$	5. Subtraction Property
1. Given: $\overline{AD} \cong \overline{BE}$ $\overline{DF} \cong \overline{BC}$ $\ll 1 \cong \ll 2$ Prove: $\Delta ACB \cong \Delta EFD$		
Statements	Reasons	- ²
		B E F



- 3. Given: $\angle FED \cong \angle CBA$ $\overline{DC} \cong \overline{AF}$ $\overline{FD} \perp \overline{DE}$, $\overline{CA} \perp \overline{AB}$
 - Prove: $\overline{EF} \cong \overline{BC}$







Summary of Methods for Proving a Quadrilateral is a Parallelogram

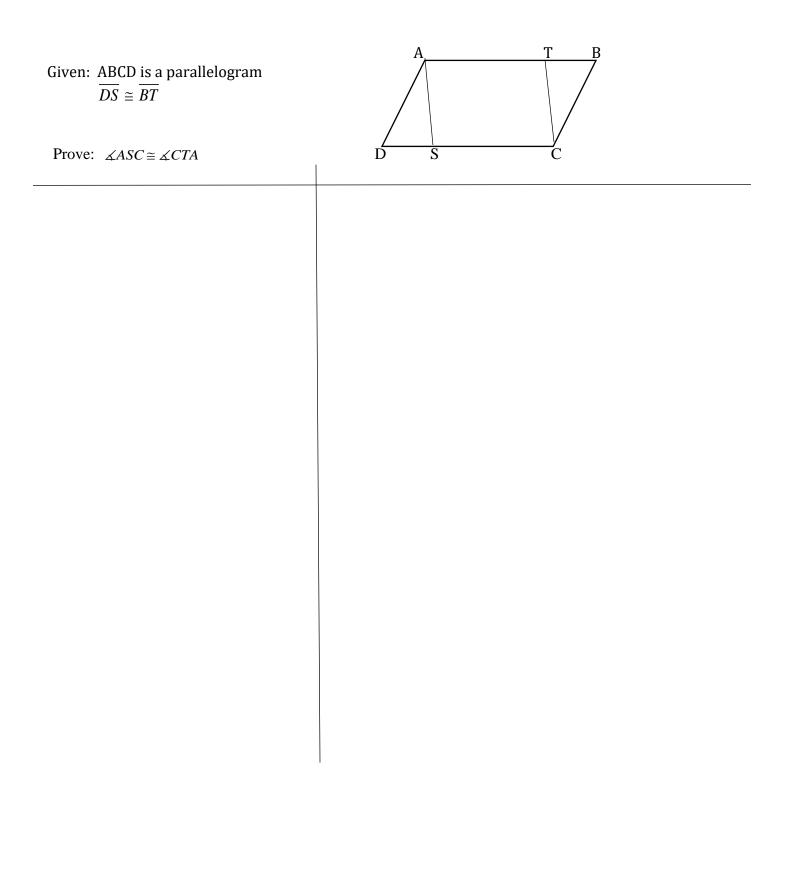
- 1. If both pairs of opposite sides of a quadrilateral are parallel, it is a parallelogram.
- 2. If both pairs of opposite sides of a quadrilateral are congruent, it is a parallelogram.
- 3. If the diagonals of a quadrilateral bisect each other it is a parallelogram.
- 4. If both pairs of opposite angles of a quadrilateral are congruent, it is a parallelogram.
- 5. If one pair of opposite sides of quadrilateral are both congruent and parallel, it is a parallelogram.

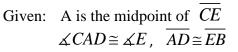
Summary of Proving a Quadrilateral is a Rectangle

- 1. If a quadrilateral has four right angles, it is a rectangle.
- 2. If a parallelogram has a right angle, it is a rectangle.
- 3. If the diagonals of a parallelogram are congruent, it is a rectangle.

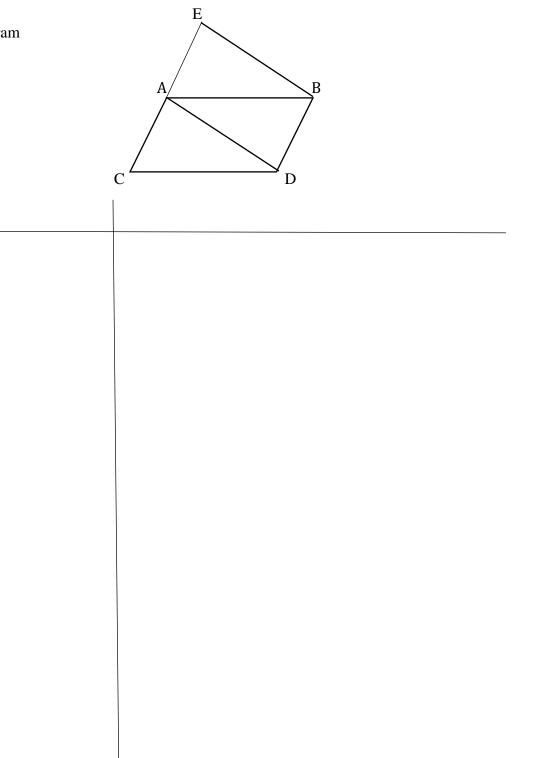
Summary of Proving a Quadrilateral is a Rhombus

- 1. If a quadrilateral has four congruent sides, it is a rhombus.
- 2. If the diagonals of a parallelogram are perpendicular, it is a rhombus.
- 3. If two consecutive sides of a parallelogram are congruent, it is a rhombus.
- 4. If the diagonals of a parallelogram bisect the angles, it is a rhombus.





Prove: ABCD is a parallelogram



Coordinate Proofs

Theorem	Formula
If the slopes of two lines are equal, then the lines are parallel.	
If the slopes of two lines are negative reciprocals of each other, then the lines are perpendicular.	
If two segments share the same midpoint, then they bisect each other.	
If two segments are equal in length, then the segments are congruent.	

1. Prove that quadrilateral ABCD is a rhombus:

A(-1, -1), B(4, 0), C(5, 5), D(0, 4)

_				~			-			_	_	-	ļ
-		8 8	-	- 8	-		3	-		-	-	-	╀
-		05 35	-		-	- 55	5		t			68 - 2	t
1		- 0 C		- 2	12 3		2				2	3	t
				20									I
_				-			-						1
	$\left \right $	2	+	- 0	2 3		- 24			-	2 2	-	╞
-				12			Ċ.			-	-	-	┝
													t
													T
		2 - 3		2			2						
_			-	-						_	_	-	ļ
+		2			-		2	-	5 - 52	-			╀
		- (2 S)		2			- 2	5-3		-		3	t
				12			8						t
		2	_										Ι

2. Prove that quadrilateral *LMNP* is a rectangle:

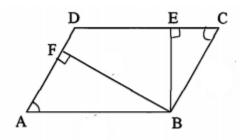
L(-2, 0), M(2, -2), N(5, 4), P(1, 6)

															l
		100				10 - 1			10			10.00			T
									1	-					t
-			-	-											t
		- 2		3 - 3		Q			2	5 3	- 3	Q ::	2 3	- 3	ł
_	+	-	_	-				-				~			ł
_			_	-		-			9			-			ļ
		-		10 0		-			æ :		5 - 23	æ -		5 - 23	
															l
	1	- 2		34-0		94	5 - 1 1	1	Q	5	5	Q	5	5	T
		1				10 1			10			10			t
				-		-			-						t
-				06 0		82 - I 1			12		5 - 33	12		5 - 33	ł
-	+							-				a - :			╀
_		-	_	_		_						-			ļ
															L
		- 2										2			l
															Γ
1		- 0	- 5	3		Q:			잇	2 3	s(s	있	5	s(s	t
_	+ +	- 2	-	-		1			÷.	-		0			t
	1 1														
_		- 6	-	-	-	8-1			8-1	-		8-1	-		t
_		-							8 - 1 8 - 1						ļ

Angle-Angle (AA) Similarity: If two angles of one triangle are congruent to two angles of another triangle, the triangles are similar.

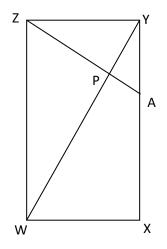
1. Given: parallelogram ABCD $\frac{\overline{BE} \perp \overline{DC}}{\overline{BF} \perp \overline{AD}}$

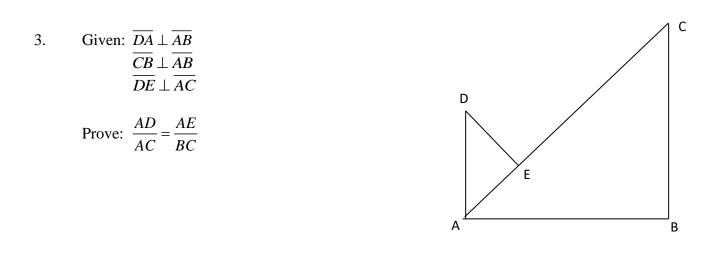
Prove: $\triangle BAF \sim \triangle BCE$



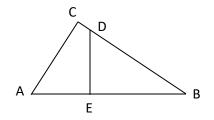
2. Given: rectangle WXYZ $\overline{WY} \perp \overline{ZA}$

Prove: $\Delta WPZ \sim \Delta YPA$





4. Given: $\overline{DE} \perp \overline{AB}$ $\measuredangle C$ is a right angle



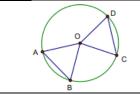
Prove: $\frac{BA}{BC} = \frac{BD}{BE}$

Proof Reasons

- 1. Corresponding parts (sides/angles) of congruent triangles are congruent. (CPCTC)
- 2. An angle bisector divides an angle into two congruent angles.
- 3. A segment bisector divides a segment into two congruent segments, at its midpoint.
- 4. A midpoint divides a segment into two congruent segments.
- 5. Vertical angles are congruent.
- 6. Angles on a Line Add to 180.
- 7. Supplements of congruent angles are congruent.
- 8. Supplements of the same angle are congruent.
- 9. a) If two parallel lines are cut by a transversal.... b) If....
 - \dots alternate interior angles are congruent. \dots alt. int. angles are \cong then the lines are parallel
 - \dots alternate exterior angles are congruent. \dots alt. ext. angles are \cong then the lines are parallel
 - ... corresponding angles are congruent. ... corresponding angles are \cong then the lines are //
 - ... consecutive interior angles are supplementary. ... consec. int. angles are suppl. then the lines are //
- 10. Corresponding angles of similar triangles are congruent.
- 11. Corresponding sides of similar triangles are proportional.
- 12. The product of the means is equal to the product of the extremes.
- 13. If two sides of a triangle are congruent, then their opposite angles are congruent. (ITT)
- 14. If two angles of a triangle are congruent, then their opposite sides are congruent. (CITT)
- 15. A triangle with two congruent sides is isosceles.
- 16. A triangle with three congruent sides is equilateral.
- 17. Perpendicular lines intersect forming right angles.
- 18. All right angles are congruent.
- 19. A triangle with a right angle is a right triangle.
- 20. Halves of congruent segments/angles are congruent.

All radii of the same circle are congruent.	$\bigcirc \bigcirc \frown_{B}^{A} \qquad \overline{OA} \cong \overline{OB}$
If an inscribed angle intercepts a semicircle, then it is a right angle.	$A \xrightarrow{Q}_{C} B \xrightarrow{E} A CB \text{ is a right} angle$
If chords in a circle are parallel, then they intercept congruent arcs.*	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \begin{array}{c} \end{array} \\ \end{array} $ $Then \widehat{AC} \cong \widehat{BD}$
If arcs of a circle are congruent, then their corresponding chords are congruent.*	A = D $B = CD$ $C = CD$ $C = CD$ $C = CD$
If inscribed angles of a circle are congruent, then the arcs they intercept are congruent.*	$\int_{B_{E}}^{C} \int_{F}^{D} $ If $\angle ABC \cong \angle DEF$ Then $\widehat{AC} \cong \widehat{DF}$
Inscribed angles of a circle that share the same intercepted arc are congruent.	$ABC \cong \angle ADC$
If a radius (or diameter) is perpendicular to a chord, then it bisects the chord and the intercepted arc.*	$ \begin{array}{c} $
If chords in a circle are congruent, then they are equidistant from the center of the circle.*	$ \begin{array}{c} $
The radius (or diameter) of a circle is perpendicular to a tangent at the point of tangency.	$ \begin{array}{c} & \text{If } \overline{AB} \text{ is a} \\ & \text{tangent} \\ & \text{then } \overline{OB} \perp \overline{AB} \\ \end{array} $
If tangents segments are drawn to a circle from an external point, then the segments are congruent.	$\overrightarrow{O}_{C} \qquad B \qquad \text{If } \overline{AB} \text{ and } \overline{CB} \\ \overrightarrow{AB} \text{ are tangents} \\ \overrightarrow{AB} \cong \overline{CB} \\ \overrightarrow{AB} \cong \overline{CB}$

If central angles of a circle are congruent, then their corresponding chords are congruent.*

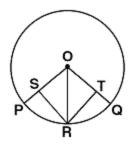


If $\angle AOB \cong \angle DOC$

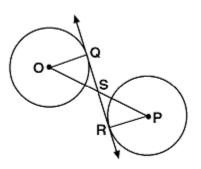
Then $\overline{AB} \cong \overline{DC}$

*The converse is also true.

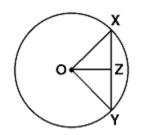
1. Given : R is the midpoint of \widehat{PQ} $\overline{RS} \perp \overline{OP}$ $\overline{RT} \perp \overline{OQ}$ Prove: $\overline{RS} \cong \overline{RT}$

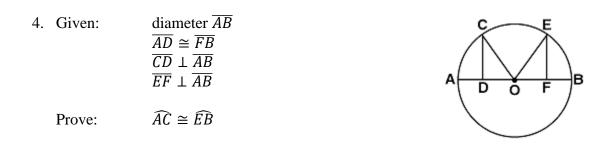


2. Given: circle $O \cong$ circle P \overleftarrow{QR} is a common tangent Prove: $\overrightarrow{OS} \cong \overrightarrow{SP}$



3. Given:In circle $O, \overline{OZ} \perp \overline{XY}$ Prove: \overline{OZ} bisects $\angle XOY$

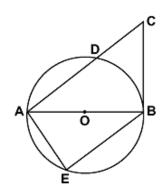




5. Given:

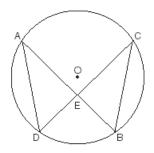
Prove:

In circle *O*, tangent \overline{CB} is drawn to the circle at *B*, *E* is a point on the circle, and $\overline{BE} \parallel \overline{ADC}$ $\Delta ABE \sim \Delta CAB$



6. Given: chords \overline{AB} and \overline{CD} of circle *O* intersect at *E* chords \overline{AD} and \overline{CB} are drawn.

Prove: (AE)(EB) = (CE)(ED)



7. Given: $\widehat{AB} \cong \widehat{BC}$

Prove: $DB \cdot EB = (CB)^2$

