

73 William Frank Drive Westfield, MA 010898 Telephone 413.781.0070 Fax 737.207.8280 www.atcgroupservices.com

October 28, 2020

Mr. Larry Hanson Massachusetts Department of Environmental Protection Division of Solid Waste 436 Dwight Street Springfield, MA 01103

RE:

Environmental Monitoring Report Annual Groundwater, Residential Drinking Water, and Landfill Gas Migration Monitoring Event Old Orebed Road Landfill Lanesborough, Massachusetts ATC Group Services Project No.: 183TD20066

Dear Mr. Hanson:

On behalf of the Town of Lanesborough, ATC Group Services, LLC. (ATC) has prepared this environmental monitoring report describing the annual groundwater, residential drinking water, and landfill gas migration monitoring event(s) that occurred on September 16, 2020 with corresponding field screening and laboratory results. Samples were collected at select monitoring points at and/or in the vicinity of the Old Orebed Road Landfill located in Lanesborough, Massachusetts.

1.0 WATER SAMPLING AND ANALYSIS

On September 16, 2020, ATC field personnel collected samples at groundwater monitoring locations MW-7, MW-8, MW-16, MW-17, MW-18, MW-103D, MW-104D, surface water monitoring location S-2, and residential drinking water well monitoring locations 55 Old Orebed Road, 87 Old Orebed Road, 95 Old Orebed Road, and 99 Old Orebed Road. ATC gauged groundwater monitoring wells MW-7 and MW-17 as dry and consequently, a sample set was not collected at these locations. Note that ATC inadvertently did not collect a sample at S-1 on September 16, 2020. On September 23, 2020, ATC returned to the site and collected the required sample.

Samples were transferred into laboratory provided glassware and submitted in ice to a Massachusetts State Certified Laboratory under standard Chain of Custody (COC) procedures and subsequently, analyzed for parameters promulgated by MassDEP Solid Waste Regulation 310 CMR 19.132(1)(h)(1 through 3) consisting of: Volatile Organic Compounds (VOCs) by United States Environmental Protection Agency (USEPA) Method 8260 or 524.2 (including the compounds 2-butanone (MEK), 4-methyl-2-pentanone (MIBK), acetone, and unknown peaks having intensities greater than 5x the background intensity (tentatively identified compounds-TICs)); 1,4-dioxane by USEPA Method 8270 via Selected Ion Monitoring (SIM); Polychlorinated Biphenyls (PCBs) by USEPA Method 8080; Total Dissolved Solids (TDS); alkalinity; chloride;

Project No. 183TD20066 Annual Groundwater, Residential Drinking Water, and Landfill Gas Migration Monitoring Report October 29, 2020 Page 2 of 8

sulfate; nitrate nitrogen; Chemical Oxygen Demand (COD); total cyanide (CN⁻); dissolved or total metals (silver (Ag), arsenic (As), barium (Ba), calcium (Ca), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), mercury (Hg), manganese (Mn), sodium (Na), lead (Pb), selenium (Se), and zinc (Zn)); and field parameters (dissolved oxygen (D.O.), pH, specific conductance, and temperature). All sample procedures were conducted in accordance with MassDEP and ATC Standard Operating Procedures (SOPs). Laboratory reports documenting the results of samples collected and associated COCs are provided as Appendix D. A well gauging and field parameter sample log summarizing the field results documented is provided as Appendix E.

Laboratory results concerning the sample parameters described above were tabularized and compared to the Winter 2020 Standards and Guidelines for Contaminants in Massachusetts Drinking Waters, which presents the Massachusetts Maximum Contaminant Level (MMCL) standards, Secondary Maximum Contaminant Level (SMCL) standards, and the MassDEP Office of Research & Standard Guidelines (ORSG) standards. The MMCL standards are the Primary Massachusetts Drinking Water Standards which are used to evaluate groundwater quality. The SMCL standards are secondary standards related to aesthetic water quality properties and are equivalent to the USEPA secondary drinking water guidelines. The MassDEP ORSG issues standards for chemical compounds other than those designated an MMCL or SMCL standard. Massachusetts Surface Water Quality Standards (MA SWQ), 314 CMR 4.05(5)(3) Freshwater Acute Criteria (NRWQA), 314 CMR 4.05(5)(3) Freshwater Chronic Criteria (NRWQC), and along with the aforementioned standards are used to evaluate the surface water quality in Massachusetts. Note that on October 5, 2020, ATC notified MassDEP via e-mail upon receiving/reviewing the laboratory report associated with the September 16, 2020 sampling event. The laboratory report indicated that several applicable standards were exceeded. See the following description for said results.

Spreadsheets summarizing the results of analyses performed and comparing said results to the applicable MMCL, SMCL, ORSG, and/or MA SWQ standards are provided as: Table - 1 (final field screening results and laboratory indicator parameter analyses); Table - 2 (total or dissolved metals analyses); and Table - 3 (VOCs and PCB analysis).

2.0 GROUNDWATER RESULTS

The laboratory indicator parameter analyses indicated that no applicable MMCL standards were exceeded relative to the groundwater samples collected during this event. The applicable SMCL standard for TDS was exceeded in the samples collected at groundwater monitoring well MW-8, MW-16, MW-18, MW-101D, MW-103D, and MW-104D. Final field screening results indicated that the applicable SMCL standard for pH was not exceeded relative to the groundwater samples collected during this event. See Table – 1 for individual sample results. No applicable ORSG standards apply.

The dissolved metals analysis indicated that the applicable MMCL standard for lead was exceeded in the sample collected at groundwater monitoring well location MW-104D. The applicable SMCL standards were exceeded for iron in the samples collected at groundwater monitoring well location MW-8, MW-101D, and MW-104D and for manganese at MW-18, MW-101D, and MW-104D. The applicable ORSG standard for manganese was exceeded in the samples collected at MW-101D and MW-104D. See Table – 2 for individual sample results. Samples for dissolved metals analysis were filtered in the field at the time of collection.

Project No. 183TD20066 Annual Groundwater, Residential Drinking Water, and Landfill Gas Migration Monitoring Report October 29, 2020 Page 3 of 8

The VOCs analysis indicated that no applicable ORSG standards were exceeded relative to the groundwater samples collected during this event. The applicable MMCL standard for trichloroethene was exceeded in the sample collected at groundwater monitoring well location MW-16 and MW-104D. No TICs were documented during this monitoring period. See Table – 3 for individual sample results. No applicable SMCL standards apply.

The PCBs analysis indicated that the ORSG standard was exceeded in the sample collected at groundwater monitoring well location MW-16. See Table – 3 for individual sample results.

3.0 SURFACE WATER RESULTS

The laboratory indicator parameter analyses indicated that no applicable MMCL and/or SMCL standards were exceeded relative to the groundwater samples collected during this event. The applicable FWCC standard for alkalinity was exceeded in the samples collected surface water monitoring locations S-1 and S-2. Final field screening results indicated that the applicable SMCL standard for pH was not exceeded relative to the groundwater samples collected during this event. See Table – 1 for individual sample results. No applicable ORSG standards apply.

The dissolved metals analysis indicated that no applicable MMCL and/or ORSG standards were exceeded relative to the groundwater samples collected during this event. The applicable SMCL standards for iron and manganese were exceeded in the sample collected at S-1. See Table – 2 for individual sample results.

The VOCs analysis indicated that no applicable MMCL and/or ORSG standards were exceeded relative to the groundwater samples collected during this event. No TICs were documented during this monitoring period. See Table – 3 for individual sample results. No applicable SMCL standards apply.

4.0 RESIDENTIAL DRINKING WATER RESULTS

Final field screening results and the laboratory indicator parameter analyses indicated that no applicable MMCL and/or SMCL standards were exceeded relative to the residential drinking water samples collected during this event. See Table – 1 for individual sample results. No applicable ORSG standards apply.

The total metals analysis indicated that no applicable MMCL and/or SMCL standards were exceeded relative to the residential drinking water samples collected during this event. The applicable ORSG standard for sodium was exceeded in the sample collected at 95 Old Orebed Road. See Table – 2 for individual sample results.

The VOCs analysis indicated that no applicable MMCL and/or ORSG standards were exceeded relative to the residential drinking water samples collected during this event. It should be noted that all concentrations reported were documented below the laboratory reportable detection limit(s) (RDLs). No TICs were documented during this monitoring period. See Table – 3 for individual sample results. No applicable SMCL standards apply.

Project No. 183TD20066 Annual Groundwater, Residential Drinking Water, and Landfill Gas Migration Monitoring Report October 29, 2020 Page 4 of 8

5.0 HISTORICAL DATA TREND SUMMARY

The following description provides a summary of laboratory result trends documented during the period of September 2018 through September 2020. A spreadsheet summarizing focal historical data documented during the referenced period is provided as Table – 4. Laboratory reports documenting the results of samples collected during the referenced period were provided as attachments with previously submitted annual environmental monitoring reports.

5.1 pH

Field screening results documented during the period of September 2018 through September 2020 indicated the following exceedances of the applicable SMCL standard for pH: MW-8 (2018) and 87 Old Orebed Road (2018 - 2019). Concentrations of pH recorded at and/or in the vicinity of the landfill ranged from 5.78 s.u. at MW-8 (2018) to 8.53 s.u. at 87 Old Orebed Road (2018 - 2019).

5.2 Chloride

No exceedances of the applicable SMCL standard for chloride have been documented concerning samples collected at and/or in the vicinity of the landfill during the period of September 2018 through September 2020. Concentrations of chloride ranged from below laboratory RDLs to 10 mg/l at MW-104D (2020).

5.3 Cyanide

No exceedances of the applicable MMCL standard for cyanide have been documented concerning the samples collected at and/or in the vicinity of the landfill during the period of September 2018 through September 2020. Concentrations of cyanide ranged from below laboratory RDLs to 0.11 mg/l at S-1 (2019).

5.4 Sulfate

No exceedances of the applicable SMCL standard for sulfate have been documented concerning the samples collected at and/or in the vicinity of the landfill during the period of September 2018 through September 2020. Concentrations of sulfate ranged from below laboratory RDLs to 126 mg/l at MW-8 (2018).

5.5 TDS

The following exceedances of the applicable SMCL standard for TDS were documented concerning the samples collected at and/or in the vicinity of the landfill during the period of September 2018 through September 2020: MW-8 (2020); MW-16 (2020), MW-18 (2020); MW-101D (2020); MW-103D (2020); andMW-104D (2020). Concentrations of TDS ranged from below laboratory RDLs to 1,410 mg/l at MW-103D (2020).

5.6 Nitrate

No exceedances of the applicable MMCL standard for nitrate have been documented concerning samples collected at and/or in the vicinity of the landfill during the period of

Project No. 183TD20066
Annual Groundwater, Residential Drinking Water, and
Landfill Gas Migration Monitoring Report
October 29, 2020
Page 5 of 8

September 2018 through September 2020. Concentrations of nitrate ranged from below laboratory RDLs to 2.2 mg/l at MW-8 (2019).

5.7 Arsenic

No exceedances of the applicable MMCL standard for arsenic have been documented concerning the samples collected at and/or in the vicinity of the landfill during the period of September 2018 through September 2020. All concentrations of arsenic documented have been reported below laboratory RDLs.

5.8 Barium

No exceedances of the applicable SMCL standard for barium have been documented concerning the samples collected at and/or in the vicinity of the landfill during the period of September 2018 through September 2020. Concentrations of barium ranged from below laboratory RDLs to 0.452 mg/l at MW-104D (2020).

5.9 Chromium

No exceedances of the applicable MMCL standard for chromium have been documented concerning the samples collected at and/or in the vicinity of the landfill during the period of September 2018 through September 2020. All concentrations of chromium have been reported below laboratory RDLs.

5.10 Copper

No exceedances of the applicable MMCL standard for copper have been documented concerning the samples collected at and/or in the vicinity of the landfill during the period of September 2018 through September 2020. Concentrations of copper ranged from below laboratory RDLs to 0.18 mg/l at 95 Old Orebed Road (2019).

5.11 Iron

The following exceedances of the applicable SMCL standard for iron were documented concerning the samples collected at and/or in the vicinity of the landfill during the period of September 2018 through September 2020: MW-8 (2020); MW-101D (2020); MW-104D (2020); and S-1 (2020). Concentrations of iron ranged from below laboratory RDLs to 1.54 mg/l at MW-101D (2020).

5.12 Manganese

The following exceedances of the applicable SMCL and/or ORSG standard for manganese were documented concerning the samples collected at and/or in the vicinity of the landfill during the period of September 2018 through September 2020: MW-18 (2020); MW-101D (2019 – 2020); MW-104D (2020); S-1 (2019 – 2020) and S-2 (2019). Concentrations of manganese ranged from below laboratory RDLs to 1.18 mg/l at MW-104D (2020).

Project No. 183TD20066 Annual Groundwater, Residential Drinking Water, and Landfill Gas Migration Monitoring Report October 29, 2020 Page 6 of 8

5.13 Lead

The following exceedances of the applicable MMCL standard for lead were documented concerning the samples collected at and/or in the vicinity of the landfill during the period of September 2018 through September 2020: MW-104D (2020). Concentrations of lead ranged from below laboratory RDLs to 0.0178 mg/l at MW-104D (2020).

5.14 Mercury

No exceedances of the applicable MMCL standard for mercury have been documented concerning the samples collected at and/or in the vicinity of the landfill during the period of September 2018 through September 2020. All concentrations of mercury documented have been reported below laboratory RDLs.

5.15 Sodium

The following exceedances of the applicable ORSG standard for sodium has been documented concerning the samples collected at and/or in the vicinity of the landfill during the period of September 2018 through September 2020: 95 Old Orebed Road (2018 – 2020). Concentrations of sodium ranged from below laboratory RDLs to 49.2 mg/l at 95 Old Orebed Road (2018).

5.16 Selenium

No exceedances of the applicable MMCL standard for selenium have been documented concerning the samples collected at and/or in the vicinity of the landfill during the period of September 2018 through September 2020. All concentrations of selenium were reported below laboratory RDLs.

5.17 Zinc

No exceedances of the applicable SMCL standard for zinc have been documented concerning the samples collected at and/or in the vicinity of the landfill during the period of September 2018 through September 2020. Concentrations of zinc ranged from below laboratory RDLs to 0.063 mg/l at 87 Old Orebed Road (2018).

5.18 <u>VOCs</u>

The following exceedances of the applicable MMCL standards have been documented concerning the sample collected at and/or in the vicinity of the landfill during the period of September 2018 through September 2020: MW-16 (trichloroethene 2019 – 2020) and MW-104D (trichloroethene 2018 – 2020). Concentrations of VOCs ranged from below the laboratory RDL to 0.26 mg/l at MW-104D (trichloroethene 2018).

5.19 <u>1,4-Dioxane</u>

The following exceedances of the applicable ORSG standard for 1,4-dioxane has been documented concerning the sample collected at and/or in the vicinity of the landfill during the period of September 2018 through September 2020: MW-7 (2019) and MW-

Project No. 183TD20066 Annual Groundwater, Residential Drinking Water, and Landfill Gas Migration Monitoring Report October 29, 2020 Page 7 of 8

16 (2018). Concentrations of 1,4-dioxane ranged from below the laboratory RDL to 0.00052 mg/l at MW-16 (2018).

5.20 PCBs

The following exceedances of the applicable MMCL standard for PCBs has been documented concerning the sample collected at and/or in the vicinity of the landfill during the period of September 2018 through September 2020: MW-16 (2018 – 2020). Concentrations of PCBs ranged from below the laboratory RDL to 0.0072 mg/l at MW-16 (2020).

6.0 LANDFILL GAS MONITORING

ATC conducted the annual landfill gas migration monitoring survey on September 16, 2020. A total of twenty-six (26) monitoring points (GW-1, GW-2, and V-1 through V-24) were located and field screened via a Landtec GEM™ 5000 Plus for % methane (% CH₄), % Lower Explosive Limit (% LEL), % oxygen (% O₂), % carbon dioxide (% CO₂), and hydrogen sulfide (H₂S parts per million (ppm)) and a PhoCheck Tiger − handheld volatile organic compound gas detector for VOCs (ppm). A concentration of methane was detected above the 25% LEL threshold at landfill gas migration monitoring points V-1, V-3, V-4, V-6, V-9, V-11, V-19, V-22, and V-23. Note that these locations are passive landfill gas vents and are designed to allow gas to escape the former landfill unit and consequently, a notification to MassDEP is not required. See Table − 5 for individual gas monitoring location results.

7.0 LANDFILL CAP/PROPERTY INSPECTION

On September 16, 2020, ATC conducted a visual inspection of the landfill cap and immediate vicinity. The inspection was performed via walking the outer perimeter of the landfill footprint and traversing the landfill crown and side slopes. At the time of the visual inspection, ATC field personnel did not observe any evidence of the following: unexplained volumetric changes in surface impoundments; ponding; visible signs of stress in plant and animal life; thinning vegetation; unexplained changes in soil characteristics; visible signs of leaching, seeping, and/or erosion; breakdown and/or damage to the landfill cover system as a result of storm water runoff, burrowing animals, trespassing, and/or recreational use; visual or olfactory evidence of landfill gas emissions which may cause an odor nuisance; indications of trespassing and/or recreational use; damage to landfill gas venting structures; damage to and/or insufficient operation of storm water drainage systems; unapproved post-closure use activities; and/or any other change to the environment that could reasonably be expected to be the result of a release from the landfill unit.

Additional Observations:

- ATC also observed the condition(s) of the gas monitoring wells, passive landfill gas vents, and groundwater monitoring wells. The referenced monitoring locations were found to be in sound condition; locked (if applicable), with no signs of vandalism, and/or other required maintenance issues.
- The former landfill unit does not have any rip-rap lined channels and/or detention basins. Storm water tends to be surface runoff which is directed into the abutting woodland.

Project No. 183TD20066 Annual Groundwater, Residential Drinking Water, and Landfill Gas Migration Monitoring Report October 29, 2020 Page 8 of 8

8.0 **ENGINEER'S CERTIFICATION STATEMENT**

"I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the information is true, accurate and complete. I am aware that there are significant penalties both civil and criminal for submitting false information including possible fines and imprisonment."

Nathan Berube, P.E.

If you have any questions and/or concerns regarding this information, please contact ATC at (413) 781-0070.

Sincerely,

ATC GROUP SERVICES, LLC.

Todd Donze Project Manager

Phone: (413) 544-2700

Email: todd.donze@atcgs.com

John Niedzielski

Environmental Services Manager

Phone: (413) 504-1903

Email: john.niedzielski@atcgs.com

Attachments:

Appendix A **Figures** Appendix B **Tables** Appendix C Charts

Appendix D Laboratory Analytical Reports

Appendix E Well Gauging and Field Parameter Log Landfill Cap Inspection Photographs Appendix F

CC:

Mrs. Kelli Robbins, Esq. Town of Lanesborough **Newton Memorial Town Hall** 83 North Main Street, P.O. Box 1492 Lanesborough, MA 01237

APPENDIX A

FIGURES

General Notes:

Site plan based on a plans provided to ATC by Town of Lanesboro, Berkshire County Middle District Redgistry of Deeds plans ODR—8291, ODR—8356, ODR—8751, ODR—8870, OPL—A83, ORD—8460, Town of Lanesboro Assessors maps airphotos by Google Earth circa 9/18/11, 5/10/14, 10/14/18 and observations made by representatives of ATC.

All locations on this plan are approximate only. This plan should not be used for construction or land conveyance purposes.

Legend

Approximate Property Line
Property Line (Other)
Well I.D.
Monitoring Well
V1:
Landfill Vent Well
GW-2:
Landfill Gas Well

Downstream Surface Water/Stream Sample

T NOOLO		0r	(Old	l Road Ore Bed oro, Mass	Road		
TITLE: Site	Plan	with	Well	&	Surface	Water	Samples	Locations

	CADFILE: 1	83TD20066-	Landfill.dwa	
	DRAWN BY:	DESIGNED BY:	CHECKED BY:	APPROVED BY:
	RAS	TD	TD	TD
	SCALE:	DATE:	JOB NO.:	FIGURE NO.:
3	1"=300'	11/3/20	183TD20066	1

APPENDIX B

TABLES

TABLE - 1
Indicator Parameters Analyses of Samples Collected at and in the Vicinity of the Old Orebed Road Landfill September 2020

		Field	Field	Field	Field			Indi	icator Parame	eters		
Sample Location	Date	pН	Тетр.	Sp. Cond	D.O.	Alkalinity	Chloride	Chemical Oxygen Demand	Total Cyanide	Nitrate-(N)	Sulfate	Total Dissolved Solids
Sample Location	Date							(COD)	(T CN -)			(TDS)
		(S.U.)	(°C)	(umhos)	(mg/L)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)
MA Surface W	ater Stds.											
MA SW	'QS	6.5-8.3	20	N/S	< 5.0	N/S	N/S	N/S	N/S	N/S	N/S	N/S
MA Drinking V	Vater Stds.											
MMCL or	SMCL	6.5-8.5	N/S	N/S	N/S	N/S	250	N/S	0.2	10	250	500
314 CMR 4.05(5) 6 Acute Cr		N/S	N/S	N/S	N/S	N/S	860	N/S	0.022	N/S	N/S	N/S
314 CMR 4.05(5) 6 Cronic Cr		6.5-9.0	N/S	N/S	N/S	20	230	N/S	0.0052	N/S	N/S	N/S
MCP 40.0974(2) St	d Table GW -1	N/S	N/S	N/S	N/S	N/S	N/S	N/S	0.2	N/S	N/S	N/S
MCP 40.0974(2) Sto	d Table GW -3	N/S	N/S	N/S	N/S	N/S	N/S	N/S	0.03	N/S	N/S	N/S
						Sı	ırface Water					
S-1	9/23/2020	6.99	18.50	250	6.01	110	11	< 10	< 0.010	< 0.05	< 5.0	160
S-2	9/16/2020	8.05	17.51	750	5.46	110	10	< 10	< 0.010	< 0.05	< 5.0	145
							roundwater					
MW-7	9/16/2020							d consequently, a sample				
MW-8	9/16/2020	7.31	13.13	3,745	5.37	200	5.5	110	< 0.010	0.52	110	841
MW-16 MW-17	9/16/2020	7.03	15.78	1,164	1.38	240	7.8	32 d consequently, a sample	< 0.010	0.46	49	1,350
MW-17 MW-18	9/16/2020 9/16/2020	7.44	14.68	677	4.07	68	ed as dry and	33	< 0.010	0.08	< 5.0	632
MW-101D	9/16/2020	7.44	15.73	1,525	2.24	85	2.2	33	< 0.010	< 0.05	< 5.0 17	703
MW-101D MW-103D	9/16/2020	7.90	16.38	1,525	1.44	92	< 1.0	< 10	< 0.010	0.16	< 5.0	1,410
MW-104D	9/16/2020	7.72	18.99	1,743	0.88	91	10	62	< 0.010	0.10	28	1,290
.1111 1012	5,10,2020	1.14	10.55	1,7 10	0.00		inking Water		1 .0.010	0.01	40	1,270
55 Old Orebed Rd	9/16/2020	8.05	16.96	788	1.17	100	1.6	< 10	< 0.005	0.07	13	210
87 Old Orebed Rd	9/16/2020	7.98	17.30	3,192	2.41	77	0.50	< 10	< 0.005	0.19	5.9	220
95 Old Orebed Rd	9/16/2020	7.71	19.77	2,448	2.43	86	6.9	< 10	< 0.005	0.81	6.8	250
99 Old Orebed Rd	9/16/2020	7.74	19.35	699	4.19	79	0.65	< 10	< 0.005	0.10	3.9	< 10

Notes:

- 1. N/A = Not Applicable.
- 2. N/S no standard promulated.
- 3. MMCL = Massachusetts Maximum Contaminant Level (Winter 2020) Primary Drinking Water Standards.
- 4. SMCL = Secondary Maximum Contaminant Level (Winter 2020) Secondary Drinking Water Standards.
- 5. Bold Red indicates an exceedance of the Primary Drinking Water Standards MMCLs.
- 6. Bold Blue indicates an exceedance of the Secondary Drinking Water Standards SMCLs.

TABLE - 2

Metals Analysis of Samples Collected at and in the Vicinity of the Old Orebed Road Landfill September 2020

		Soluble/	Silver	Arsenic	Barium	Calcium	Cadmium	Chromium	Copper	Iron	Mercury	Manganese	Sodium	Lead	Selenium	Zinc
Sample Location	Date	Total	Ag	As	Ва	Ca	Cd	Cr	Cu	Fe	Hg	Mn	Na	Pb	Se	Zn
Sumple Eccurion	2	Metals	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)
MA Drinking V	Vater Stds.			<u></u>	, .	, , , , , , , , , , , , , , , , , , ,		,	, <u></u>	, g		, , , g , ,		,g.,		, .
ORSG, MMCL	, or SMCL		0.10	0.010	2	NA	0.005	0.1	1.3	0.3	0.002	0.05/0.30	20	0.015	0.05	5
314 CMR 4.05(5) 6 Acute Cri			3.2	0.34	N/S	N/S	0.0018	N/S	N/S	N/S	0.0014	N/S	N/S	0.065	N/S	0.12
314 CMR 4.05(5) 6 Cronic Cr			N/S	0.15	N/S	N/S	0.00072	N/S	N/S	1	0.00077	N/S	N/S	0.025	N/S	0.12
MCP 40.0974(2) Sto	d Table GW -1		0.1	0.010	2.0	N/S	0.004	0.1	1.3	N/S	0.002	N/S	N/S	0.015	0.05	0.9
MCP 40.0974(2) Sto	d Table GW -3		0.007	0.9	50	N/S	0.004	0.3	N/S	N/S	0.02	N/S	N/S	0.01	0.1	5
							Surfa	ace Water								
S-1	9/23/2020	Soluble	< 0.00050	< 0.0080	< 0.0100	37.8	< 0.0050	< 0.0100	< 0.0100	0.314	< 0.00020	0.101	4.09	< 0.0150	< 0.0300	< 0.0200
S-2	9/16/2020	Soluble	< 0.00050	< 0.0080	< 0.0100	38.3	< 0.0050	< 0.0100	< 0.0100	< 0.100	< 0.00020	0.0366	3.98	< 0.0150	< 0.0300	< 0.0200
			1					undwater								
MW-7	9/16/2020	Soluble		,								collected duri				
MW-8	9/16/2020	Soluble	< 0.00050	< 0.0080	< 0.0100	97.2	< 0.0050	< 0.0100	< 0.0100	0.314	< 0.00020	0.0480	4.46	< 0.0150	< 0.0300	< 0.0200
MW-16	9/16/2020	Soluble	< 0.00050	< 0.0080	0.0117	87.4	< 0.0050	< 0.0100	< 0.0100	< 0.100	< 0.00020	< 0.0100	4.71	< 0.0150	< 0.0300	< 0.0200
MW-17	9/16/2020	Soluble										collected duri				
MW-18 MW-101D	9/16/2020	Soluble Soluble	< 0.00050 < 0.00050	< 0.0080 < 0.0080	< 0.0100	19.7 43.7	< 0.0050 < 0.0050	< 0.0100 < 0.0100	< 0.0100 0.0104	< 0.100 1.54	< 0.00020 < 0.00020	0.137 0.665	< 2.00 2.91	< 0.0150 < 0.0150	< 0.0300 < 0.0300	< 0.0200 0.0226
MW-101D MW-103D	9/16/2020 9/16/2020	Soluble	< 0.00050	< 0.0080	< 0.0100	27.9	< 0.0050	< 0.0100	< 0.0104	< 0.100	< 0.00020	0.0198	< 2.00	< 0.0150	< 0.0300	< 0.0226
MW-103D MW-104D	9/16/2020	Soluble	< 0.00050	< 0.0080	0.452	53.4	< 0.0050	< 0.0100	0.0195	1.49	< 0.00020	1.18	2.03	0.0178	< 0.0300	0.0200
1/11/1-10-11/	5/10/2020	Soluble	· 0.00030	· 0.0000	0.432	JJ.7		ing Water	0.0193	1.77	- 0.00020	1.10	4.00	0.0178	· 0.0300	0.0376
55 Old Orebed Rd	9/16/2020	Total	< 0.00050	< 0.00100	0.00253	29.9	< 0.00050	< 0.00200	< 0.00500	0.222	< 0.00030	0.0247	3.55	< 0.00100	< 0.00200	0.0113
87 Old Orebed Rd	9/16/2020	Total	< 0.00050	< 0.00100	0.00205	22.3	< 0.00050	< 0.00200	< 0.00500	< 0.100	< 0.00030	< 0.00500	< 2.00	< 0.00100	< 0.00200	< 0.0113
95 Old Orebed Rd	9/16/2020	Total	< 0.00050	< 0.00100	< 0.00100	< 0.500	< 0.00050	< 0.00200	< 0.00500	< 0.100	< 0.00030	< 0.00500	45.6	< 0.00100	< 0.00200	< 0.0100
99 Old Orebed Rd	9/16/2020	Total	< 0.00050	< 0.00100	0.00187	27.9	< 0.00050	< 0.00200	0.0197	< 0.100	< 0.00030	< 0.00500	< 2.00	< 0.00100	< 0.00200	< 0.0100

Notes:

- 1. N/A = Not Applicable.
- 2. N/S no standard promulgated.
- 3. MMCL = Massachusetts Maximum Contaminant Level (Winter 2020) Primary Drinking Water Standards.
- 4. SMCL = Secondary Maximum Contaminant Level (Winter 2020) Secondary Drinking Water Standards.
- 5.ORSG = Office of Research and Standards Guidelines (Winter 2020).
- 6. **Bold Red** indicates an exceedance of the Primary Drinking Water Standards MMCLs.
- 7. Bold Blue indicates an exceedance of the Secondary Drinking Water Standards SMCLs.
- 8. Bold Black indicates an exceedance of the ORSGs.
- 9. ORSG = Office of Research and Standards Guidelines of 0.30 mg/L for manganese also provided in addition to the SMCL value of 0.05 mg/L

TABLE - 3

VOCs Analysis of Samples Collected at and in the Vicinity of the Old Orebed Road Landfill September 2020

Sample Location	Date	TICs (ug/L)	1,4 Dioxane (mg/L)	Acetone (mg/L)	2-Butanone (MEK) (mg/L)	4-Methyl-2-pentanone (MIBK) (mg/L)	Methyl tert-butyl ether MtBE (mg/L)	Tetrachloroethene (mg/L)	Trichloroethene (mg/L)	Total PCBs (mg/l)
MA Drinking V	Vater Stds.									J
MMCL or	ORSG	N/S	0.0003	6.3	4.0	0.35	0.07	0.005	0.005	0.0005
314 CMR 4.05(5) 6 Acute Cr		N/S	N/S	N/S	N/S	N/S	N/S	N/S	N/S	N/S
314 CMR 4.05(5) 6 Cronic Cr		N/S	N/S	N/S	N/S	N/S	N/S	N/S	N/S	N/S
MCP 40.0974(2) Sto	d Table GW -1	N/S	0.0003	6.3	4.0	0.35	0.07	0.005	0.005	0.0005
MCP 40.0974(2) Sto	d Table GW -3	N/S	50	50	50	50	50	30	5	0.01
						Surface Wate	er			
S-1	9/23/2020	0	< 0.00028	< 0.01	< 0.002	< 0.002	< 0.001	< 0.001	< 0.001	N/A
S-2	9/16/2020	0	< 0.00028	< 0.01	< 0.002	< 0.002	< 0.001	< 0.001	< 0.001	N/A
						Groundwate				
MW-7	9/16/2020				_	tion gauged as dry a	and consequently, a sampl	e set was not collected du	ring the monitoring period	
MW-8	9/16/2020	0	< 0.00032	< 0.01	< 0.002	< 0.002	< 0.001	< 0.001	< 0.001	N/A
MW-16	9/16/2020	0	< 0.00030	< 0.01	< 0.002	< 0.002	< 0.001	0.00452	0.0251	0.0072
MW-17	9/16/2020			lwater monito		tion gauged as dry a	and consequently, a sampl	e set was not collected du	ring the monitoring period	
MW-18	9/16/2020	0	< 0.00030	< 0.01	< 0.002	< 0.002	< 0.001	< 0.001	< 0.001	< 0.000278
MW-101D	9/16/2020	0	< 0.00030	< 0.01	< 0.002	< 0.002	< 0.001	< 0.001	< 0.001	N/A
MW-103D	9/16/2020	0	< 0.00028	< 0.01	< 0.002	< 0.002	< 0.001	< 0.001	< 0.001	N/A
MW-104D	9/16/2020	0	< 0.00030	< 0.01	< 0.002	< 0.002	< 0.001	0.0015	0.180	< 0.000294
						Drinking Wat				
55 Old Orebed Rd	9/16/2020	0	< 0.00020	< 0.01	< 0.005	< 0.005	< 0.00050	< 0.00050	< 0.00050	N/A
87 Old Orebed Rd	9/16/2020	0	< 0.00020	< 0.01	< 0.005	< 0.005	< 0.00050	< 0.00050	< 0.00050	N/A
95 Old Orebed Rd	9/16/2020	0	< 0.00020	< 0.01	< 0.005	< 0.005	< 0.00050	< 0.00050	< 0.00050	N/A
99 Old Orebed Rd	9/16/2020	0	< 0.00020	< 0.01	< 0.005	< 0.005	< 0.00050	< 0.00050	< 0.00050	N/A

Notes:

- 1. N/A = Not Applicable.
- 2. N/S no standard promulated.
- 3. MMCL = Massachusetts Maximum Contaminant Level (Winter 2020) Primary Drinking Water Standards.
- $\textbf{4. } \textcolor{red}{\textbf{Bold Red}} \text{ indicates an exceedance of the Primary Drinking Water Standards } \textcolor{red}{\textbf{MMCLs}}.$
- 5.ORSG = Office of Research and Standards Guidelines (2020).
- 6. Bold Black indicates an exceedance of the ORSGs.
- 7. BRL = Below Reporting Limit

Table 4 Former Town of Lanesbrough Landfill - Old Orebed Road Landfill Old Orebed Road, Ware, MA

Historical Groundwater Monitoring Trends

Note: Analyte Not Listed = No Standard, Not Required for Notification, and/or No Historical Detection or Exceedances

-					Note:	Analyte Not	Listea = No S	tanaara , Not	Required for	Notification, an	a/ or No Hist	orical Detection	on or Exceeda	nces						
	1,4-Dioxane	Tetrachloroethene	Trichloroethene	Total PCBs	Arsenic	Barium	Cadmium	Copper	Iron	Manganese	Sodium	Lead	Zinc	рН	Alkalinity	Chloride	Cyanide	Nitrate	Sulfate	TDS
MMCL		0.005	0.005	0.0005	0.01	2	0.005	1.3				0.015					0.2	10		
SMCL									0.3	0.05			5	6.5-8.5		250			250	500
ORSG	0.0003									0.30	20									
MA SWQS														6.5-8.3						
NRWQC					0.15		0.00072		1			0.025	0.12	6.5-9.0	20	230	0.0052			
NRWQA					0.34		0.0018					0.065	0.12			860	0.022			
Date										MW-7										
9/26/18		ľ								consequently, a	*						1		1	1
9/9/19	0.00038	< 0.001	< 0.001		< 0.0008	< 0.01	< 0.0002		< 0.050	0.0098	6.6	< 0.0005	< 0.010	7.78	180	12	< 0.010	0.79	15	230
9/16/20	1				Grou	ındwater mor	itoring well lo	cation observe	ed as dry and	consequently, a	sample set wa	is not collected	d during this r	nonitoring ev	ent.					1
										1511										
Date										MW-8					100				105	
9/26/18	< 0.0002	< 0.001	< 0.001		< 0.004	0.007	< 0.001	< 0.005	< 0.011	0.006	4.82	< 0.002	0.003	5.78	190	< 3.0	< 0.010	0.57	126	400
9/9/19	< 0.00022	< 0.001	< 0.001		< 0.0008	< 0.0002	< 0.0002	< 0.001	< 0.050	0.010	4.6	< 0.0005	< 0.010	7.35	170	3.9	< 0.010	2.2	100	210
9/16/20	< 0.00032	< 0.001	< 0.001	_	< 0.0080	< 0.0100	< 0.0050	< 0.0100	0.314	0.0480	4.46	< 0.0150	< 0.0200	7.31	200	5.5	< 0.010	0.52	110	841
Date										MW-16										
9/26/18	0.00052	0.0018	< 0.001	0.005	< 0.004	0.008	< 0.001	< 0.005	< 0.011	< 0.001	4.29	< 0.002	0.003	6.58	201	4.8	< 0.010	0.51	23.7	260
9/9/19	< 0.00032	0.0018	0.024	0.003	< 0.004	< 0.008	< 0.001	< 0.003	0.080	< 0.001	4.29	< 0.002	< 0.003	6.94	190	4.3	< 0.010	0.84	28	210
9/16/20	< 0.00022	0.0034	0.024	0.0029	< 0.0080	0.0117	< 0.0050	< 0.001	< 0.100	< 0.0100	4.71	< 0.0003	< 0.0200	7.03	240	7.8	< 0.010	0.46	49	1,350
9/10/20	< 0.00030	0.00432	0.0231	0.0072	< 0.0080	0.0117	< 0.0030	< 0.0100	< 0.100	< 0.0100	4.71	< 0.0130	< 0.0200	7.03	240	7.0	< 0.010	0.40	49	1,550
Date										MW-17										
9/26/18					Groi	ındwater mor	nitoring well lo	cation observe	ed as dry and	consequently, a	sample set wa	s not collected	during this r	nonitoring ev	ent					
9/9/19										consequently, a										
9/16/20										consequently, a	•									
, ,										1 21										
Date				•	•	•	•			MW-18										
9/26/18	< 0.0002	< 0.001	< 0.001	< 0.0005	< 0.004	0.007	< 0.001	< 0.005	< 0.011	0.014	0.84	< 0.002	< 0.002	7.28	68	< 3.0	< 0.010	0.10	< 3.0	88
9/9/19	< 0.0002	< 0.001	< 0.001	< 0.0002	< 0.0008	< 0.01	< 0.0002	< 0.001	< 0.050	0.0056	< 2.0	< 0.0005	< 0.010	7.41	63	1.7	< 0.010	0.16	2.5	48
9/16/20	< 0.00030	< 0.001	< 0.001	< 0.000278	< 0.0080	< 0.0100	< 0.0050	< 0.0100	< 0.100	0.137	< 2.00	< 0.0150	< 0.0200	7.44	68	1.8	< 0.010	0.08	< 5.0	632
Date										MW-101D										
9/26/18	< 0.0002	< 0.001	< 0.001		< 0.004	0.011	< 0.001	< 0.005	< 0.011	0.023	3.37	< 0.002	< 0.002	7.40	87	< 3.0	< 0.010	< 0.05	11.2	120
9/9/19	< 0.0002	< 0.001	< 0.001		< 0.0008	0.011	< 0.0002	< 0.001	0.071	0.16	3.0	< 0.0005	< 0.010	8.28	80	1.00	< 0.010	< 0.0001	13	100
9/16/20	< 0.00030	< 0.001	< 0.001		< 0.0080	0.141	< 0.0050	0.0104	1.54	0.665	2.91	< 0.0150	0.0226	7.90	85	2.2	< 0.010	< 0.05	17	703
Date		T					T			MW-103D		1			1					
9/26/18	< 0.0002	< 0.001	< 0.001		< 0.004	0.009	< 0.001	< 0.005	< 0.011	0.017	1.88	< 0.002	< 0.002	7.52	91	< 3.0	< 0.010	0.13	4.6	88
9/9/19	< 0.0002	< 0.001	< 0.001		< 0.0008	< 0.01	< 0.0002	< 0.001	0.067	0.0081	< 2.0	< 0.0005	< 0.010	7.95	82	< 1.0	< 0.010	0.25	5.1	130
9/16/20	< 0.00028	< 0.001	< 0.001		< 0.0080	< 0.0100	< 0.0050	< 0.0100	< 0.100	0.0198	< 2.00	< 0.0150	< 0.0200	7.77	92	< 1.0	< 0.010	0.16	< 5.0	1,410
D (MIN 104D										
Date 0/26/19	10,0000	. 0.001	0.01	10,0005	1.0.004	0.007	10.001	10.005	+ 0.011	MW-104D	0.14	10.000	10.000	7.47	80	0.4	10.010	0.45	10.0	160
9/26/18	< 0.0002	< 0.001	0.21	< 0.0005	< 0.004	0.007	< 0.001	< 0.005	< 0.011	0.008	2.14	< 0.002	< 0.002	7.47	89	8.4	< 0.010	0.45	18.8	160
9/9/19	< 0.0002	< 0.004	0.26	< 0.0002	< 0.0008	< 0.01	< 0.0002	< 0.001	< 0.050	0.0028	2.1	< 0.0005	< 0.010	8.03	93	7.2	< 0.010	0.89	20	78
0/16/20	< 0.00020	0.0015	0 100	< 0.000004	< 0.0000	0.450	< 0.0050	0.0105	1 40	1 10	2.02	0.0170	0.0279	7 70	0.1	10	< 0.010	0 F 1	20	1 200
9/16/20	< 0.00030	0.0015	0.180	< 0.000294	< 0.0080	0.452	< 0.0050	0.0195	1.49	1.18	2.03	0.0178	0.0378	7.72	91	10	< 0.010	0.51	28	1,290

Date									55	Old Orebed Roa	d									
9/26/18	< 0.0002	< 0.0005	< 0.0005		< 0.0005	0.003	< 0.001	0.010	0.133	0.026	5.0	< 0.0010	0.019	8.02	103	< 3.0	< 0.005	0.13	10.6	120
9/9/19	< 0.0002	< 0.0005	< 0.0005		< 0.0008	< 0.01	< 0.0002	0.0094	< 0.050	0.0046	4.1	0.001	0.019	8.08	100	1.2	< 0.010	0.28	12	110
9/16/20	< 0.00020	< 0.00050	< 0.00050		< 0.00100	0.00253	< 0.00500	< 0.00500	0.222	0.0247	3.55	< 0.00100	0.0113	8.05	100	1.6	< 0.005	0.07	13	210
Date									87	Old Orebed Roa	d									
9/26/18	< 0.0002	< 0.0005	< 0.0005		< 0.0005	0.002	< 0.001	0.008	0.078	0.001	1.6	< 0.0010	0.063	8.53	73	< 3.0	< 0.005	0.20	5.0	87
9/9/19	< 0.00019	< 0.0005	< 0.0005		< 0.0008	< 0.01	< 0.0002	0.059	< 0.050	< 0.001	< 0.002	0.0026	0.1	8.53	76	< 1.0	< 0.010	0.31	5.8	82
9/16/20	< 0.00020	< 0.00050	< 0.00050		< 0.00100	0.00205	< 0.00050	< 0.00500	< 0.100	< 0.00500	< 2.00	< 0.00100	< 0.0100	7.98	77	0.50	< 0.005	0.19	5.9	220
Date						ı		ı		Old Orebed Roa			1							
9/26/18	< 0.0002	< 0.0005	< 0.0005		< 0.0005	0.001	< 0.001	0.027	0.021	< 0.001	49.2	0.0060	0.045	8.14	89	5.3	< 0.005	0.94	5.9	130
9/9/19	< 0.0002	< 0.0005	< 0.0005		< 0.0008	< 0.01	< 0.0002	0.18	< 0.050	< 0.001	58	0.0022	0.09	8.20	140	6.3	< 0.010	0.94	6.5	130
9/16/20	< 0.00020	< 0.00050	< 0.00050		< 0.00100	< 0.00100	< 0.00050	< 0.00500	< 0.100	< 0.00500	45.6	< 0.00100	< 0.0100	7.71	86	6.9	< 0.005	0.81	6.8	250
Date						ı		ı		Old Orebed Roa					T	1				
9/26/18	< 0.0002	< 0.0005	< 0.0005		< 0.0005	0.003	< 0.001	0.062	0.051	0.002	0.9	0.0027	0.017	8.20	81	< 3.0	< 0.005	0.12	3.3	92
9/9/19	< 0.0002	< 0.0005	< 0.0005		< 0.0008	< 0.01	< 0.0002	0.074	< 0.050	< 0.001	< 0.002	0.00069	< 0.010	8.48	87	< 1.0	< 0.010	0.20	3.8	78
9/16/20	< 0.00020	< 0.00050	< 0.00050		< 0.00100	0.00187	< 0.00050	0.0197	< 0.100	< 0.00500	< 2.00	< 0.00100	< 0.0100	7.74	79	0.65	< 0.005	0.10	3.9	< 10
												L								
Date										S-1 Upstream					1	T		1		440
9/26/18	< 0.0002	< 0.001	< 0.001	-	< 0.004	0.003	< 0.001	< 0.005	0.052	0.022	3.25	< 0.002	< 0.002	7.73	87	4.4	< 0.010	0.10	< 3.0	110
9/9/19	< 0.0002	< 0.001	< 0.001		< 0.0008	< 0.01	< 0.0002	0.0027	0.10	0.082	4.2	0.0042	0.016	8.05	99	8.4	0.11	0.17	3.7	100
9/16/20	< 0.00028	< 0.001	< 0.001	-	< 0.0080	< 0.0100	< 0.0050	< 0.0100	0.314	0.101	4.09	< 0.0150	< 0.0200	6.99	110	11	< 0.010	< 0.05	< 5.0	160
D (1.2.D										
Date				1					_	3-2 Downstream					ı .=	T		1		100
9/26/18	< 0.0002	< 0.001	< 0.001	-	< 0.004	0.003	< 0.001	< 0.005	0.051	0.023	3.14	< 0.002	< 0.002	7.52	87	4.4	< 0.010	0.10	< 3.0	120
9/9/19	< 0.0002	< 0.001	< 0.001		< 0.0008	< 0.01	< 0.0002	< 0.001	< 0.050	0.090	4.4	< 0.0005	< 0.010	7.86	93	8.3	< 0.010	0.17	3.7	120
9/16/20	< 0.00028	< 0.001	< 0.001		< 0.0080	< 0.0100	< 0.0050	< 0.0100	< 0.100	0.0366	3.98	< 0.0150	< 0.0200	8.05	110	10	< 0.010	< 0.05	< 5.0	145

VOCs indicated as ug/l.

Metals and indicator parameters indicated as mg/l.

Blank indicates analyte not sampled.

TABLE - 5

Landfill Gas Monitoring Survey Former Old Orebed Road Landfill September 2020

Date: Barometric Pressure: 29.68 9/16/2020 Reported by: Keven Brown End: 29.68 Weather Conditions: 63.0° Partly Cloudy Temperature: Wind & Direction: End: 61.0° 2 mph Northeast

Ground Cover: Vegetation or Snow

LOCATION	TIME	% CH 4	% LEL	% O 2	% CO 2	H_2S ppm	VOCs ppm
Ambient	4:20	0	0	20.9	0	0	0
GW-1	5:09	0	0	19.7	2.8	0	0
GW-2	4:22	0	0	20.7	0.2	0	0
V-1	4:21	17.9	358	13.4	8.3	0	0
V-2	4:39	0	0	20.3	0.4	0	0
V-3	4:37	5.1	102	16.2	3.5	0	0
V-4	4:35	2.7	54	15.6	5.0	0	0
V-5	4:24	0	0	19.9	1.3	0	0
V-6	4:26	2.6	52	17.6	3.4	0	0
V-7	4:28	0	0	20.8	0	0	0
V-8	4:30	0.7	14	18.8	0.8	0	0
V-9	4:51	4.9	98	0.4	12.9	2.0	0
V-10	4:49	0.1	2	17.9	0.8	0	0
V-11	4:47	34.0	680	0.9	22.9	2.0	0
V-12	4:57	0	0	18.9	1.9	0	0
V-13	4:45	0.1	2	20.6	0.4	0	0
V-14	5:16	0	0	20.8	0	0	0
V-15	4:43	0	0	20.8	0.2	0	0
V-16	4:59	0	0	20.7	0.3	0	0
V-17	4:55	0	0	20.7	0	0	0
V-18	4:53	0.2	4	18.8	1.0	0	0
V-19	4:51	1.4	28	17.8	1.5	0	0
V-20	4:32	0	0	18.4	3.4	0	0
V-21	5:10	0.2	4	20.2	1.0	0	0
V-22	5:05	26.4	528	8.4	18.8	0	0
V-23	5:03	21.8	436	5.7	18.5	0	0
V-24	5:01	0	0	20.6	0.4	0	0

Analyzed using Geotechnical Instruments Landtec GEM-5000.

VOCs: Volatile Organic Compounds result recorded in ppmv of TOVs.

[%] CH₄: Percent methane.

[%] LEL: Percent of the Lower Explosive Limit.

[%] O2: Percent oxygen.

[%] CO₂: Percent carbon dioxide.

H₂S: Hydrogen sulfide result recorded in parts per million by volume (ppmv) of total organic vapors (TOVs).

APPENDIX C

CHARTS

APPENDIX D

LABORATORY ANALYTICAL REPORTS

V	Final Report
	Revised Report

Report Date: 30-Sep-20 11:12

Laboratory Report SC59356

ATC Group Services, LLC 73 William Franks Drive West Springfield, MA 01089

Project: Old Orebed Rd Landfill - Lanesborough, MA

Project #: 183TD20066

Attn: Todd Donze

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Connecticut # PH-0722 Massachusetts # RI907 New Hampshire # 2240 New York # 11393 Rhode Island # LAI00368 USDA # P330-20-00109 Authorized by:

Agnes Huntley Project Manager

agnish Shut

Analyses are performed in accordance with MA DEP certification standards. Massachusetts DEP does not offer certification for all analytes. For those that are offered, Eurofins Environment Testing New England holds certification for the analytes as indicated with an X in the "Cert." column within this report.

Please note that this report contains 28 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Eurofins Environment Testing New England.

Eurofins Environment Testing New England is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Eurofins Environment Testing New England is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.eurofinsus.com/Spectrum for a full listing of our current certifications and fields of accreditation.

Please contact the Laboratory or Technical Director at 413-789-9018 with any questions regarding the data contained in this laboratory report.

Sample Summary

Work Order: SC59356

Project: Old Orebed Rd Landfill - Lanesborough, MA

Project Number: 183TD20066

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
SC59356-01	55 Old Orebed Rd	Drinking Water	16-Sep-20 14:00	17-Sep-20 09:50
SC59356-02	87 Old Orebed Rd	Drinking Water	16-Sep-20 12:30	17-Sep-20 09:50
SC59356-03	95 Old Orebed Rd	Drinking Water	16-Sep-20 13:00	17-Sep-20 09:50
SC59356-04	99 Old Orebed Rd	Drinking Water	16-Sep-20 13:30	17-Sep-20 09:50
SC59356-05	Trip	Trip Blank	16-Sep-20 00:00	17-Sep-20 09:50

30-Sep-20 11:12 Page 2 of 28

CASE NARRATIVE: GC/MS VOA Method 524.2_Preserved: The method requirement for no headspace was not met. The following volatile sample was analyzed with headspace in the sample container(s): SC59356-05 (410-14391-5). The sample container was received with headspace.

This laboratory report is not valid without an authorized signature on the cover page.

Sample Acceptance Check Form

Client:	ATC Group Services, LLC - West Springfield, MA
Project:	Old Orebed Rd Landfill - Lanesborough, MA / 183TD20066
Work Order:	SC59356

9/17/2020

Sample(s) received on:

The following outlines the condition of samples for the attached Chain of Custody upon receipt.

	Yes	No	N/A
Were custody seals present?		✓	
Were custody seals intact?			\checkmark
Were samples received at a temperature of $\leq 6^{\circ}$ C?	\checkmark		
Were samples cooled on ice upon transfer to laboratory representative?	\checkmark		
Were sample containers received intact?	\checkmark		
Were samples properly labeled (labels affixed to sample containers and include sample ID, site location, and/or project number and the collection date)?	\checkmark		
Were samples accompanied by a Chain of Custody document?	\checkmark		
Does Chain of Custody document include proper, full, and complete documentation, which shall include sample ID, site location, and/or project number, date and time of collection, collector's name, preservation type, sample matrix and any special remarks concerning the sample?	V		
Did sample container labels agree with Chain of Custody document?	\checkmark		
Were samples received within method-specific holding times?	\overline{V}		П

This laboratory report is not valid without an authorized signature on the cover page.

Summary of Hits

Lab ID: SC59356-01 Client ID: 55 Old Orebed Rd

Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Nitrate as Nitrogen	0.07		0.01	mg/l	E300.0
Calcium	29.9		0.500	mg/l	EPA 200.7
Iron	0.222		0.100	mg/l	EPA 200.7
Sodium	3.55		2.00	mg/l	EPA 200.7
Barium	0.00253		0.00100	mg/l	EPA 200.8
Manganese	0.0247		0.00500	mg/l	EPA 200.8
Zinc	0.0113		0.0100	mg/l	EPA 200.8
Chloride	1.6		0.50	mg/l	MCAWW 300.0_28D
Sulfate	13		2.0	mg/l	MCAWW 300.0_28D
Alkalinity, Total	100		5.0	mg/l	SM 2320B
Total Dissolved Solids	210		10	mg/l	SM 2540C_Calcd
Lab ID: SC59356-02			Client ID: 87 Old C	Orebed Rd	
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Nitrate as Nitrogen	0.19		0.01	mg/l	E300.0
Calcium	22.3		0.500	mg/l	EPA 200.7
Barium	0.00205		0.00100	mg/l	EPA 200.8
Chloride	0.50		0.50	mg/l	MCAWW 300.0_28D
Sulfate	5.9		2.0	mg/l	MCAWW 300.0_28D
Alkalinity, Total	77		5.0	mg/l	SM 2320B
Total Dissolved Solids	220		10	mg/l	SM 2540C_Calcd
Lab ID: SC59356-03			Client ID: 95 Old C	Orebed Rd	
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Nitrate as Nitrogen	0.81		0.01	mg/l	E300.0
Sodium	45.6		2.00	mg/l	EPA 200.7
Chloride	6.9		0.50	mg/l	MCAWW 300.0_28D
Sulfate	6.8		2.0	mg/l	MCAWW 300.0_28D
Alkalinity, Total	86		5.0	mg/l	SM 2320B
Total Dissolved Solids	250		10	mg/l	SM 2540C_Calcd
Lab ID: SC59356-04			Client ID: 99 Old (Orebed Rd	
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Nitrate as Nitrogen	0.10		0.01	mg/l	E300.0
Calcium	27.9		0.500	mg/l	EPA 200.7
Barium	0.00187		0.00100	mg/l	EPA 200.8
Copper	0.0197		0.00500	mg/l	EPA 200.8
Chloride	0.65		0.50	mg/l	MCAWW 300.0 28D
	0.03		0.00	C	
Sulfate	3.9		2.0	mg/l	MCAWW 300.0_28D

Please note that because there are no reporting limits associated with hazardous waste characterizations or micro analyses, this summary does not include hits from these analyses if included in this work order.

Sample Identification 55 Old Orebed Rd SC59356-01			<u>Client Project #</u> 183TD20066			<u>Matı</u> Drinking		Collection Date/Tr 16-Sep-20 14:0					
Analyte(s)	Result	Flag	Units	*RDL	Dilution	MCL	SMCL	ORSG	Method Ref.	Prepared	Analyzed	Analyst	Cert.
Total Metals by EPA 20	0 Series Meth	nods											
Arsenic	< 0.00100		mg/l	0.00100	1	0.01			EPA 200.8	21-Sep-20	24-Sep-20	pmh/edt	Х
Barium	0.00253		mg/l	0.00100	1	2			"	"	,	. "	Х
Calcium	29.9		mg/l	0.500	1				EPA 200.7	"	24-Sep-20	EDT	Х
Cadmium	< 0.00050		mg/l	0.00050	1	0.005			EPA 200.8	"	24-Sep-20		Х
Chromium	< 0.00200		mg/l	0.00200	1	0.1			н			. "	Х
Copper	< 0.00500		mg/l	0.00500	1	1.3	1		н		"	"	Х
Iron	0.222		mg/l	0.100	1		0.3		EPA 200.7		22-Sep-20	edt	Х
Mercury	< 0.00030	R06	mg/l	0.00030	1	0.002			EPA 245.1	21-Sep-20	23-Sep-20	edt	Х
Manganese	0.0247		mg/l	0.00500	1		0.05		EPA 200.8	-	24-Sep-20	pmh/edt	Х
Sodium	3.55		mg/l	2.00	1			20	EPA 200.7		22-Sep-20	edt	Х
Lead	< 0.00100		mg/l	0.00100	1	0.015			EPA 200.8		24-Sep-20	pmh/edt	Х
Selenium	< 0.00200		mg/l	0.00200	1	0.05			"		,		Х
Zinc	0.0113		mg/l	0.0100	1		5		"	"	"	"	Х
Subcontracted Analyses			3										
Analysis performed by E		nerica - Ruffa	lo - M-NY	044									
Silver	< 0.50	rerrea Bugga	ug/l	0.50	1		100		EPA 200.8	22-Sep-20 10:00	22-Sep-20 16:27	M-NY044	ł
Subcontracted Analyse Prepared by method N										.0.00	. 5.2.		
Analysis performed by E	urofins TestAn	nerica - Buffa	lo - M-NY	044									
Chloride	1.6		mg/l	0.50	1		250		MCAWW 300.0_28D	21-Sep-20 21:52	21-Sep-20 21:52	M-NY044	ļ
Sulfate	13		mg/l	2.0	1		250		"	"	"	"	
Analysis performed by E	urofins TestAn	nerica - Buffa	lo - M-NY	044									
Chemical Oxygen Demand	< 10		mg/l	10	1				MCAWW 410.4	19-Sep-20 19:00	19-Sep-20 19:00	M-NY044	ļ
Analysis performed by E	urofins TestAn	nerica - Buffa	lo - M-NY	044									
Alkalinity, Total	100		mg/l	5.0	1				SM 2320B	23-Sep-20 14:53	23-Sep-20 14:53	M-NY044	ļ
Analysis performed by E	urofins TestAn	nerica - Buffa	lo - M-NY	044									
Total Dissolved Solids	210		mg/l	10	1				SM 2540C_Calcd	18-Sep-20 19:31	18-Sep-20 19:31	M-NY044	ŀ
Subcontracted Analyses Subcontracted Analyse													
Analysis performed by E		ster Laborato	ries Envir	onmental - N	1-P4009								
Bromomethane	< 0.50	ster Edicordio	ug/l	0.50	1			10	EPA-DW 524.2_Preserved	28-Sep-20 23:11	28-Sep-20 23:11	M-PA009	,
N-Propylbenzene	< 0.50		ug/l	0.50	1				_ "	"	"	"	
1,1-Dichloroethene	< 0.50		ug/l	0.50	1	7			"	"	"	"	
2-Chlorotoluene	< 0.50		ug/l	0.50	1				w	"	"	"	
trans-1,2-Dichloroethen e	< 0.50		ug/l	0.50	1	100			"	"	"	"	
1,2,3-Trichloropropane	< 0.50		ug/l	0.50	1				"	"	"	"	
Isopropylbenzene	< 0.50		ug/l	0.50	1				"	"	"	"	
Ethylbenzene	< 0.50		ug/l	0.50	1	700			"	"	"	"	
di-Isopropyl ether	< 0.50		ug/l	0.50	1				"	"	"	"	
1,2-Dibromo-3-Chloropr opane	< 1.0		ug/l	1.0	1	0.2			"	"	"	"	
Toluene	< 0.50		ug/l	0.50	1	1000			"	"	•	"	
p-Isopropyltoluene	< 0.50		ug/l	0.50	1				"		"	"	

55 Old Orebed Rd	ebed Rd				ent Project i 3TD20066	<u>#</u>	<u>Matı</u> Drinking		Collection Da 16-Sep-20		Received 17-Sep-20	
SC59356-01	D Iv	FI.	T T •	*DD1	D'L d'	MCI	GMCI	ORGG	M.d. ID.C	D	411	1.1.6.4
Analyte(s)	Result	Flag	Units	*RDL	Dilution	MCL	SMCL	ORSG	Method Ref.	Preparea	Anaiyzea	Analyst Cert.
Subcontracted Analyses												
Subcontracted Analys												
Analysis performed by E	-	ster Laborato										
Acrylonitrile	< 10		ug/l	10	1				EPA-DW 524.2_Preserved	28-Sep-20 23:11	28-Sep-20 23:11	M-PA009
1,2-Dichloropropane	< 0.50		ug/l	0.50	1	5			_ "	"	"	"
trans-1,3-Dichloroprope ne	< 0.50		ug/l	0.50	1				"	"	"	"
4-Chlorotoluene	< 0.50		ug/l	0.50	1				"		"	"
1,1,1-Trichloroethane	< 0.50		ug/l	0.50	1	200			"	"	"	"
Chloroform	< 0.50		ug/l	0.50	1			70	"		"	"
Freon 113	< 0.50		ug/l	0.50	1			210000	"	"	"	m .
tert-Butylbenzene	< 0.50		ug/l	0.50	1				n n	"	"	п
m&p-Xylene	< 1.0		ug/l	1.0	1				n n	"	"	II .
1,2-Dichloroethane	< 0.50		ug/l	0.50	1	5			n n	"	"	II .
1,3-Dichloropropane	< 0.50		ug/l	0.50	1				"	"	"	"
Hexachlorobutadiene	< 0.50		ug/l	0.50	1				u u		"	"
Benzene	< 0.50		ug/l	0.50	1	5			u u		"	"
1,1-Dichloroethane	< 0.50		ug/l	0.50	1			70	"			"
Methyl tertiary butyl ether	< 0.50		ug/l	0.50	1		40	70	u	"	"	"
Carbon tetrachloride	< 0.50		ug/l	0.50	1	5			"	"	"	II .
Dibromomethane	< 0.50		ug/l	0.50	1				"	"	"	II .
Methylene Chloride	< 1.0		ug/l	1.0	1	5			n n	"	"	п
o-Xylene	< 0.50		ug/l	0.50	1				n n	"	"	п
Ethyl t-butyl ether	< 0.50		ug/l	0.50	1				"	"	"	II .
Bromodichloromethane	< 0.50		ug/l	0.50	1				n n	"	"	п
Chloromethane	< 0.50		ug/l	0.50	1				n n	"	"	п
2,2-Dichloropropane	< 0.50		ug/l	0.50	1				n n	"	"	II .
cis-1,2-Dichloroethene	< 0.50		ug/l	0.50	1	70			"	"	"	"
Styrene	< 0.50		ug/l	0.50	1	100			"		"	"
1,3,5-Trimethylbenzene	< 0.50		ug/l	0.50	1				"		"	"
Vinyl chloride	< 0.50		ug/l	0.50	1	2			"	"	"	"
1,1,2-Trichloroethane	< 0.50		ug/l	0.50	1	5			n n	"	"	п
1,1-Dichloropropene	< 0.50		ug/l	0.50	1				"	"	"	"
n-Butylbenzene	< 0.50		ug/l	0.50	1				n n	"	"	п
Tentatively Identified Compound	None		ug/l		1				"	"	"	п
Trichlorofluoromethane	< 0.50		ug/l	0.50	1				"		"	m .
Tetrachloroethene	< 0.50		ug/l	0.50	1	5			"	"	"	n .
Dibromochloromethane	< 0.50		ug/l	0.50	1				"	"	"	II .
2-Butanone	< 5.0		ug/l	5.0	1			4000	"	"	"	II .
1,2,3-Trichlorobenzene	< 0.50		ug/l	0.50	1				"	"	"	п
Tetrahydrofuran	< 7.0		ug/l	7.0	1			1300	"	"	"	II .
Chloroethane	< 0.50		ug/l	0.50	1				"	"	"	m .
2-Hexanone	< 5.0		ug/l	5.0	1				"	"	"	m .
Carbon disulfide	< 2.0		ug/l	2.0	1				"	"	"	"
Chlorobenzene	< 0.50		ug/l	0.50	1	100			"	"	"	"
Ethyl ether	< 0.50		ug/l	0.50	1				"	"	"	

Sample Identification 55 Old Orebed Rd SC59356-01					ent Project :	<u>#</u>	<u>Matı</u> Drinking		Collection De 16-Sep-20			ceived Sep-20
Analyte(s)	Result	Flag	Units	*RDL	Dilution	MCL	SMCL	ORSG	Method Ref.	Prepared	Analyzed	Analyst Cert
Subcontracted Analyse	es											
Subcontracted Analys	ses_											
Analysis performed by E	Eurofins Lance	aster Laborato	ories Enviro	nmental - N	M-PA009							
1,1,2,2-Tetrachloroetha ne	< 0.50		ug/l	0.50	1				EPA-DW 524.2_Preserved	28-Sep-20 23:11	28-Sep-20 23:11	M-PA009
1,4-Dichlorobenzene	< 0.50		ug/l	0.50	1	75			"	"	"	"
sec-Butylbenzene	< 0.50		ug/l	0.50	1				"	n n	"	··
1,2,4-Trichlorobenzene	< 0.50		ug/l	0.50	1	70			"	n n	"	"
1,2,4-Trimethylbenzene	< 0.50		ug/l	0.50	1				"	n n	"	"
t-Amyl methyl ether	< 0.50		ug/l	0.50	1			90	"	"	"	"
Dichlorodifluoromethan e	< 0.50		ug/l	0.50	1			1400	"	"	"	"
t-Butyl alcohol	< 25		ug/l	25	1			120	"	"	"	II .
1,3-Dichlorobenzene	< 0.50		ug/l	0.50	1				"	"	"	п
1,2-Dichlorobenzene	< 0.50		ug/l	0.50	1	600			"	"	"	"
Bromochloromethane	< 0.50		ug/l	0.50	1				"	"	"	u
Bromoform	< 0.50		ug/l	0.50	1				"	"	"	"
1,1,1,2-Tetrachloroetha	< 0.50		ug/l	0.50	1				"	"	"	"
1,2-Dibromoethane	< 0.50		ug/l	0.50	1	0.05			"	"	"	"
Bromobenzene	< 0.50		ug/l	0.50	1				"	"	"	"
cis-1,3-Dichloropropen e	< 0.50		ug/l	0.50	1				n	"	"	"
4-Methyl-2-pentanone	< 5.0		ug/l	5.0	1			350	"	"	"	"
Acetone	< 10		ug/l	10	1			6300	"	"	"	II .
Trichloroethene	< 0.50		ug/l	0.50	1	5			"	"	"	"
Naphthalene	< 0.50		ug/l	0.50	1			140	"	n	"	II
Surrogate recoveries:												
1,2-Dichlorobenzene-d 4 (Surr)	92		80-1	20 %					u	"	"	"
4-Bromofluorobenzene (Surr)	90		80-1	20 %					п	"	"	"
Subcontracted Analyse Prepared by method E												
Analysis performed by P	Phoenix Enviro	onmental Labs	s, Inc. * - M	ACT007								
Nitrate as Nitrogen	0.07		mg/l	0.01	1	10			E300.0	18-Sep-20 00:23	18-Sep-20 00:23	M-PA009
Prepared by method E												
Analysis performed by P		onmental Labs	s, Inc. * - M									
Total Cyanide (Drinking water)	< 0.005		mg/l	0.005	1	0.2			E335.4	21-Sep-20	22-Sep-20 11:04	M-PA009
Subcontracted Analys Prepared by method E												
Analysis performed by P	Phoenix Enviro	onmental Labs	s, Inc. * - M	ACT007								
1,4-dioxane	< 0.20		ug/l	0.20	1			3	EPA522	18-Sep-20	21-Sep-20 16:05	M-PA009
Surrogate recoveries:												
% 1,4-dioxane-d8	88		70-1	30 %					"	"	"	II

30-Sep-20 11:12 Page 8 of 28

3C37330-02	Sample Identification 87 Old Orebed Rd SC59356-02			•			Matrix Collection Date/Time ing Water 16-Sep-20 12:30			Received 17-Sep-20			
Analyte(s)	Result	Flag	Units	*RDL	Dilution	MCL	SMCL	ORSG	Method Ref.	Prepared	Analyzed	Analyst	Cert.
Total Metals by EPA 200	Series Meth	ods											
Arsenic	< 0.00100		mg/l	0.00100	1	0.01			EPA 200.8	21-Sep-20	24-Sep-20	pmh/edt	Х
Barium	0.00205		mg/l	0.00100	1	2			"	"	"	"	Х
Calcium	22.3		mg/l	0.500	1				EPA 200.7	"	24-Sep-20	EDT	Х
Cadmium	< 0.00050		mg/l	0.00050	1	0.005			EPA 200.8	"	24-Sep-20	pmh/edt	Х
Chromium	< 0.00200		mg/l	0.00200	1	0.1			"	"	"	"	Х
Copper	< 0.00500		mg/l	0.00500	1	1.3	1		"	"	"	"	Х
Iron	< 0.100		mg/l	0.100	1		0.3		EPA 200.7	"	22-Sep-20	edt	Х
Mercury	< 0.00030	R06	mg/l	0.00030	1	0.002			EPA 245.1	21-Sep-20	23-Sep-20	edt	Х
Manganese	< 0.00500		mg/l	0.00500	1		0.05		EPA 200.8	21-Sep-20	24-Sep-20	pmh/edt	Х
Sodium	< 2.00		mg/l	2.00	1			20	EPA 200.7	"	22-Sep-20	edt	Х
Lead	< 0.00100		mg/l	0.00100	1	0.015			EPA 200.8	"	24-Sep-20	pmh/edt	Х
Selenium	< 0.00200		mg/l	0.00200	1	0.05			"	"		. "	Х
Zinc	< 0.0100		mg/l	0.0100	1		5		"	"	"		Х
Subcontracted Analyses			J										
Analysis performed by Eu	rofins TestAm	erica - Buffai	lo - M-NY	044									
Silver	< 0.50	- 193	ug/l	0.50	1		100		EPA 200.8	22-Sep-20 10:00	22-Sep-20 16:37	M-NY044	ļ
Subcontracted Analyse Prepared by method No													
Analysis performed by Eu	rofins TestAm	erica - Buffai	o - M-NY	044									
Chloride	0.50		mg/l	0.50	1		250		MCAWW 300.0_28D	21-Sep-20 22:06	21-Sep-20 22:06	M-NY044	1
Sulfate	5.9		mg/l	2.0	1		250		"	"	"	"	
Analysis performed by Eu	rofins TestAm	erica - Buffai	o - M-NY	044									
Chemical Oxygen Demand	< 10		mg/l	10	1				MCAWW 410.4	19-Sep-20 19:00	19-Sep-20 19:00	M-NY044	ļ
Analysis performed by Eu	rofins TestAm	erica - Buffai	o - M-NY	044									
Alkalinity, Total	77		mg/l	5.0	1				SM 2320B	23-Sep-20 15:15	23-Sep-20 15:15	M-NY044	ļ
Analysis performed by Eu	rofins TestAm	erica - Buffai	o - M-NY	044									
Total Dissolved Solids	220		mg/l	10	1				SM 2540C_Calcd	18-Sep-20 19:31	18-Sep-20 19:31	M-NY044	ŀ
Subcontracted Analyses Subcontracted Analyse	c												
Analysis performed by Eu		ter Lahorato	ries Envir	onmental - N	1_P4009								
Bromomethane	< 0.50	iei Luooruioi	ug/l	0.50	1			10	EPA-DW 524.2_Preserved		28-Sep-20 23:36	M-PA009	i
N-Propylbenzene	< 0.50		ug/l	0.50	1				"	"	"	"	
1,1-Dichloroethene	< 0.50		ug/l	0.50	1	7			"			"	
2-Chlorotoluene	< 0.50		ug/l	0.50	1	•			"	"	"	"	
	< 0.50		ug/l	0.50	1	100			"	"	"	"	
1,2,3-Trichloropropane	< 0.50		ug/l	0.50	1				"	"	"	"	
Isopropylbenzene	< 0.50		ug/l	0.50	1				"	"	"	"	
Ethylbenzene	< 0.50		ug/l	0.50	1	700			"		"	"	
di-Isopropyl ether	< 0.50		ug/l	0.50	1				"	"	"	"	
	< 1.0		ug/l	1.0	1	0.2			н	"	"	"	
Toluene	< 0.50		ug/l	0.50	1	1000			"			"	
			ug/l	0.50	1						"		

Sample Identification				Client Project #			Mat	ix Collection Date/T		te/Time Received			
87 Old Orebed Rd SC59356-02				33TD20066	_	Drinking		16-Sep-20			Sep-20		
Analyte(s)	Result	Flag	Units	*RDL	Dilution	MCL	SMCL	ORSG	Method Ref.	Prepared	Analyzed	Analyst	Cert.
Subcontracted Analyses													
Subcontracted Analyse				1	M D4000								
Analysis performed by E. Acrylonitrile	urojins Lanca < 10	ster Laborato	ories Enviro ug/l	nmental - 1 10	<i>м-РА009</i> 1				EPA-DW	28-Sep-20	28 San 20	M DAGGO	
Acryloniune	~ 10		ug/i	10	'				524.2_Preserved	23:36	23:36	W-FA003	
1,2-Dichloropropane	< 0.50		ug/l	0.50	1	5			"	"	"	"	
trans-1,3-Dichloroprope	< 0.50		ug/l	0.50	1				"	"	"	"	
ne 4 Chlorataluana	< 0.F0		//	0.50	4				"	"			
4-Chlorotoluene 1,1,1-Trichloroethane	< 0.50 < 0.50		ug/l	0.50 0.50	1 1	200			"	"			
Chloroform	< 0.50		ug/l ug/l	0.50	1	200		70	"	"	"		
Freon 113	< 0.50			0.50	1			210000	"	"	"		
tert-Butylbenzene	< 0.50		ug/l ug/l	0.50	1			210000	"	"	"		
m&p-Xylene	< 1.0		ug/l	1.0	1					"	"		
1,2-Dichloroethane	< 0.50		ug/l	0.50	1	5				"	"		
1,3-Dichloropropane	< 0.50		ug/l	0.50	1	Ü				"	"		
Hexachlorobutadiene	< 0.50		ug/l	0.50	1				"	"			
Benzene	< 0.50		ug/l	0.50	1	5			"	"			
1,1-Dichloroethane	< 0.50		ug/l	0.50	1	Ü		70	"	"	"		
Methyl tertiary butyl	< 0.50		ug/l	0.50	1		40	70	"	"			
ether	1 0.00		ug/i	0.00	•		40	70					
Carbon tetrachloride	< 0.50		ug/l	0.50	1	5			"	"	"	"	
Dibromomethane	< 0.50		ug/l	0.50	1				"	"	"	"	
Methylene Chloride	< 1.0		ug/l	1.0	1	5			"	"	"	"	
o-Xylene	< 0.50		ug/l	0.50	1				"	"	"	"	
Ethyl t-butyl ether	< 0.50		ug/l	0.50	1				"	"	"	"	
Bromodichloromethane	< 0.50		ug/l	0.50	1				"	"	"	"	
Chloromethane	< 0.50		ug/l	0.50	1				"	"	"	"	
2,2-Dichloropropane	< 0.50		ug/l	0.50	1				· ·	"	"	"	
cis-1,2-Dichloroethene	< 0.50		ug/l	0.50	1	70			"	"	"	"	
Styrene	< 0.50		ug/l	0.50	1	100			"	"	"	"	
1,3,5-Trimethylbenzene	< 0.50		ug/l	0.50	1				"	"	"	"	
Vinyl chloride	< 0.50		ug/l	0.50	1	2			"	"	"	"	
1,1,2-Trichloroethane	< 0.50		ug/l	0.50	1	5			"	"	"	"	
1,1-Dichloropropene	< 0.50		ug/l	0.50	1				"	"	"	"	
n-Butylbenzene	< 0.50		ug/l	0.50	1				"	"	"	"	
Tentatively Identified Compound	None		ug/l		1				"	"	"	"	
Trichlorofluoromethane	< 0.50		ug/l	0.50	1				"	"	"		
Tetrachloroethene	< 0.50		ug/l	0.50	1	5				"	"		
Dibromochloromethane	< 0.50		ug/l	0.50	1	J			"	"		"	
2-Butanone	< 5.0		ug/l	5.0	1			4000	"	"	"		
1,2,3-Trichlorobenzene	< 0.50		ug/l	0.50	1			.550	n .	"		"	
Tetrahydrofuran	< 7.0		ug/l	7.0	1			1300	"	"	"	"	
Chloroethane	< 0.50		ug/l	0.50	1			.000	"	"	"	"	
2-Hexanone	< 5.0		ug/l	5.0	1				"	"	"	"	
Carbon disulfide	< 2.0		ug/l	2.0	1				W	"	"	"	
Chlorobenzene	< 0.50		ug/l	0.50	1	100			"	"	"	"	
Ethyl ether	< 0.50		ug/l	0.50	1				"	"	"		

Sample Identification 87 Old Orebed Rd					ent Project 3	<u>#</u>	<u>Matr</u> Drinking		Collection Do			ceived Sep-20
SC59356-02	Result	Ela-	II:4-	*RDL	Dilution	MCL	SMCL	ORSG	Method Ref.			Analyst Ce
Analyte(s)	Kesuit	Flag	Units	"KDL	Dilution	MCL	SMCL	UKSG	метоа кеј.	Preparea	Anaiyzea	Analyst Ce
Subcontracted Analyses	s											
Subcontracted Analyse	<u>es</u>											
Analysis performed by E	urofins Lanca	ster Laboratoi	ries Enviro	nmental - N	<i>A-PA009</i>							
1,1,2,2-Tetrachloroetha ne	< 0.50		ug/l	0.50	1				EPA-DW 524.2_Preserved	28-Sep-20 23:36	28-Sep-20 23:36	M-PA009
1,4-Dichlorobenzene	< 0.50		ug/l	0.50	1	75			"	"	"	"
sec-Butylbenzene	< 0.50		ug/l	0.50	1				"	"	"	"
,2,4-Trichlorobenzene	< 0.50		ug/l	0.50	1	70			"	"	"	"
1,2,4-Trimethylbenzene	< 0.50		ug/l	0.50	1				"		"	"
-Amyl methyl ether	< 0.50		ug/l	0.50	1			90	"	"	u u	u
Dichlorodifluoromethan	< 0.50		ug/l	0.50	1			1400	Ħ	"	"	"
-Butyl alcohol	< 25		ug/l	25	1			120	"	"	"	u .
1,3-Dichlorobenzene	< 0.50		ug/l	0.50	1				"	"	"	"
1,2-Dichlorobenzene	< 0.50		ug/l	0.50	1	600			"	"	"	"
Bromochloromethane	< 0.50		ug/l	0.50	1				"		"	"
Bromoform	< 0.50		ug/l	0.50	1				"	"	"	"
,1,1,2-Tetrachloroetha	< 0.50		ug/l	0.50	1				н	"	"	II .
,2-Dibromoethane	< 0.50		ug/l	0.50	1	0.05			"	"	"	"
Bromobenzene	< 0.50		ug/l	0.50	1				"	"	"	"
is-1,3-Dichloropropen	< 0.50		ug/l	0.50	1				п	n .	"	n .
1-Methyl-2-pentanone	< 5.0		ug/l	5.0	1			350	"		"	"
Acetone	< 10		ug/l	10	1			6300	"	"	"	"
richloroethene	< 0.50		ug/l	0.50	1	5			"		"	"
laphthalene	< 0.50		ug/l	0.50	1			140	"	"	"	"
Surrogate recoveries:												
1,2-Dichlorobenzene-d 1 (Surr)	92		80-1	20 %					и	"	"	"
1-Bromofluorobenzene (Surr)	87		80-1	20 %					"	II	"	"
Subcontracted Analyses Prepared by method E												
Analysis performed by P		onmental Labs,	Inc. * - M	ACT007								
Nitrate as Nitrogen	0.19	,	mg/l	0.01	1	10			E300.0	18-Sep-20 00:28	18-Sep-20 00:28	M-PA009
Prepared by method E			In a * 14	ACTOOT								
I <i>nalysis performed by P</i> otal Cyanide (Drinking		ттепіаі Labs,			1	0.2			E335.4	21 San 20	22 San 20	M DACCO
vater)			mg/l	0.005	1	0.2			E335.4	21-Sep-20	11:05	M-PA009
Subcontracted Analyse Prepared by method E												
Inalysis performed by P	hoenix Enviro	onmental Labs,	Inc. * - M	ACT007								
,4-dioxane	< 0.20		ug/l	0.20	1			3	EPA522	18-Sep-20	21-Sep-20 16:21	M-PA009
Surrogate recoveries:												
% 1,4-dioxane-d8	91		70-1	30 %					"	"	"	"

30-Sep-20 11:12 Page 11 of 28

Sample Identification				Clia	ent Project	#	Matı	rix	Collection D	ate/Time	RA	ceived	
95 Old Orebed Rd			· · · · · · · · · · · · · · · · · · ·	3TD20066	_	Drinking		16-Sep-20		·	Sep-20		
SC59356-03				10.	31D20000		Dillikilig	, water	10-Sep-20	13.00	1 /-	Sep-20	
Analyte(s)	Result	Flag	Units	*RDL	Dilution	MCL	SMCL	ORSG	Method Ref.	Prepared	Analyzed	Analyst	Cert
Total Metals by EPA 20	00 Series Met	hods											
Arsenic	< 0.00100		mg/l	0.00100	1	0.01			EPA 200.8	21-Sep-20	24-Sep-20	pmh/edt	Χ
Barium	< 0.00100		mg/l	0.00100	1	2			"		"	"	Χ
Calcium	< 0.500		mg/l	0.500	1				EPA 200.7	"	24-Sep-20	EDT	Χ
Cadmium	< 0.00050		mg/l	0.00050	1	0.005			EPA 200.8		24-Sep-20	pmh/edt	Χ
Chromium	< 0.00200		mg/l	0.00200	1	0.1			"		"	"	Χ
Copper	< 0.00500		mg/l	0.00500	1	1.3	1		"	"	"	"	Χ
Iron	< 0.100		mg/l	0.100	1		0.3		EPA 200.7	"	22-Sep-20	edt	Χ
Mercury	< 0.00030	R06	mg/l	0.00030	1	0.002			EPA 245.1	21-Sep-20	23-Sep-20	edt	Χ
Manganese	< 0.00500		mg/l	0.00500	1		0.05		EPA 200.8	21-Sep-20	24-Sep-20	pmh/edt	Χ
Sodium	45.6		mg/l	2.00	1			20	EPA 200.7		22-Sep-20	edt	Х
Lead	< 0.00100		mg/l	0.00100	1	0.015			EPA 200.8	u	24-Sep-20	pmh/edt	Χ
Selenium	< 0.00200		mg/l	0.00200	1	0.05			•	"	"	"	Х
Zinc	< 0.0100		mg/l	0.0100	1		5		"	"	"	"	Χ
Subcontracted Analyse	s												
Analysis performed by E		merica - Buff	alo - M-NY	044									
Silver	< 0.50		ug/l	0.50	1		100		EPA 200.8	22-Sep-20	22-Sep-20	M-NY044	ļ
			J							10:00	16:39		
Subcontracted Analys													
Prepared by method N													
Analysis performed by E	urofins TestA	merica - Buff	alo - M-NY	044									
Chloride	6.9		mg/l	0.50	1		250		MCAWW	-	21-Sep-20	M-NY044	
Sulfate	6.8		ma/l	2.0	1		250		300.0_28D "	22:21	22:21		
		· n //	mg/l		ı		250						
Analysis performed by E	-	тепса - Вијј			4				MC AVANA/ 440 4	10 Can 20	10 Can 20	M NIVO44	
Chemical Oxygen Demand	< 10		mg/l	10	1				MCAWW 410.4	19-Sep-20 19:00	19-Sep-20 19:00	IVI-IN Y U44	+
Analysis performed by E	Surofins TestA	merica - Buff	alo - M-NY	044									
Alkalinity, Total	86	30	mg/l	5.0	1				SM 2320B	23-Sep-20	23-Sep-20	M-NY044	ļ
•			· ·							15:21	15:21		
Analysis performed by E	Eurofins TestA	merica - Buff	alo - M-NY	044									
Total Dissolved Solids	250		mg/l	10	1				SM		18-Sep-20	M-NY044	ļ
									2540C_Calcd	19:31	19:31		
Subcontracted Analyse													
Subcontracted Analys													
Analysis performed by E	-	ister Laborat											
Bromomethane	< 0.50		ug/l	0.50	1			10	EPA-DW 524.2_Preserved		29-Sep-20 00:02	м-РА009	
N-Propylbenzene	< 0.50		ug/l	0.50	1				"	"	"	"	
1,1-Dichloroethene	< 0.50		ug/l	0.50	1	7				"	"		
2-Chlorotoluene	< 0.50		ug/l	0.50	1	•				"	"		
trans-1,2-Dichloroethen	< 0.50		ug/l	0.50	1	100			"		"	"	
e	- 0.00		ag/i	0.00	•								
1,2,3-Trichloropropane	< 0.50		ug/l	0.50	1				"	"	"	"	
Isopropylbenzene	< 0.50		ug/l	0.50	1				"	"	"	"	
Ethylbenzene	< 0.50		ug/l	0.50	1	700			"	"	"	"	
di-Isopropyl ether	< 0.50		ug/l	0.50	1				"	"	"	"	
1,2-Dibromo-3-Chloropr	< 1.0		ug/l	1.0	1	0.2			•	"	"	"	
opane			ū										
Toluene	< 0.50		ug/l	0.50	1	1000			"	"	"	"	
			_										

0.50

ug/l

p-Isopropyltoluene

< 0.50

Sample Identification				Client Project #			Matrix Collection Date		Date/Time Received				
95 Old Orebed Rd SC59356-03					33TD20066	_	Drinking		16-Sep-20		·	Sep-20	
Analyte(s)	Result	Flag	Units	*RDL	Dilution	MCL	SMCL	ORSG	Method Ref.	Prepared	Analyzed	Analyst	Cert.
Subcontracted Analyses													
Subcontracted Analyse				, ,	r D. (000								
Analysis performed by E	•	ster Laborato							EDA DIA/	20 0 20	00.0 00	NA DA 000	
Acrylonitrile	< 10		ug/l	10	1				EPA-DW 524.2_Preserved	29-Sep-20 00:02	00:02	W-PAUU9	
1,2-Dichloropropane	< 0.50		ug/l	0.50	1	5			"	"	"	"	
trans-1,3-Dichloroprope	< 0.50		ug/l	0.50	1				"	"	"	"	
ne	. 0. 50			0.50	4				"	"		"	
4-Chlorotoluene	< 0.50		ug/l	0.50	1	200			"				
1,1,1-Trichloroethane Chloroform	< 0.50 < 0.50		ug/l	0.50 0.50	1 1	200		70	"	"	"		
Freon 113	< 0.50		ug/l		1			210000	"	"	"		
tert-Butylbenzene	< 0.50		ug/l	0.50 0.50	1			210000	"	"	"		
•	< 1.0		ug/l	1.0	1				"	"	"		
m&p-Xylene 1,2-Dichloroethane	< 0.50		ug/l ug/l	0.50	1	5			"	"	"		
1,3-Dichloropropane	< 0.50		ug/l	0.50	1	3			"	"	"		
Hexachlorobutadiene	< 0.50		_	0.50	1				"	"	"		
Benzene	< 0.50		ug/l ug/l	0.50	1	5			"	"	"		
1,1-Dichloroethane	< 0.50		ug/l	0.50	1	3		70	"	"	"		
Methyl tertiary butyl	< 0.50		ug/l	0.50	1		40	70	"	"			
ether	V 0.50		ug/i	0.50			40	70					
Carbon tetrachloride	< 0.50		ug/l	0.50	1	5			"	"	"	"	
Dibromomethane	< 0.50		ug/l	0.50	1				"	"	"	"	
Methylene Chloride	< 1.0		ug/l	1.0	1	5			"	"	"	"	
o-Xylene	< 0.50		ug/l	0.50	1				"	"	"	"	
Ethyl t-butyl ether	< 0.50		ug/l	0.50	1				"	"	"	"	
Bromodichloromethane	< 0.50		ug/l	0.50	1				"	"	"	"	
Chloromethane	< 0.50		ug/l	0.50	1				"	"	"	"	
2,2-Dichloropropane	< 0.50		ug/l	0.50	1				"	"	"	"	
cis-1,2-Dichloroethene	< 0.50		ug/l	0.50	1	70			"	"	"	"	
Styrene	< 0.50		ug/l	0.50	1	100			"	"	"	"	
1,3,5-Trimethylbenzene	< 0.50		ug/l	0.50	1				"	"	"	"	
Vinyl chloride	< 0.50		ug/l	0.50	1	2			"	"	"	"	
1,1,2-Trichloroethane	< 0.50		ug/l	0.50	1	5			"	"	"	"	
1,1-Dichloropropene	< 0.50		ug/l	0.50	1				"	"	"	"	
n-Butylbenzene	< 0.50		ug/l	0.50	1				"	"	"	"	
Tentatively Identified Compound	None		ug/l		1				II	"	"	"	
Trichlorofluoromethane	< 0.50		ug/l	0.50	1				"	"	"	"	
Tetrachloroethene	< 0.50		ug/l	0.50	1	5			"	"	"	"	
Dibromochloromethane	< 0.50		ug/l	0.50	1	J			n .	"	"	"	
2-Butanone	< 5.0		ug/l	5.0	1			4000	"	"	"	"	
1,2,3-Trichlorobenzene	< 0.50		ug/l	0.50	1			- 7-	"	"	"	"	
Tetrahydrofuran	< 7.0		ug/l	7.0	1			1300	"	"	"	"	
Chloroethane	< 0.50		ug/l	0.50	1			- 7-	"	"	"	"	
2-Hexanone	< 5.0		ug/l	5.0	1				"	"	"	"	
Carbon disulfide	< 2.0		ug/l	2.0	1				n	"	"	"	
Chlorobenzene	< 0.50		ug/l	0.50	1	100			"	"	"	"	
Ethyl ether	< 0.50		ug/l	0.50	1				"	"	"	"	

Sample Identification 95 Old Orebed Rd SC59356-03					ent Project a	<u>#</u>	<u>Matı</u> Drinking		Collection Da			ceived Sep-20
Analyte(s)	Result	Flag	Units	*RDL	Dilution	MCL	SMCL	ORSG	Method Ref.	Prepared	Analyzed	Analyst Cer
Subcontracted Analyse												
Subcontracted Analyse												
Analysis performed by E		etar I aborato	rias Emviro	nmantal M	A PA000							
1,1,2,2-Tetrachloroetha ne	< 0.50	sier Luboruio	ug/l	0.50	1				EPA-DW 524.2_Preserved	29-Sep-20 00:02	29-Sep-20 00:02	M-PA009
1,4-Dichlorobenzene	< 0.50		ug/l	0.50	1	75			- "	"	"	m .
sec-Butylbenzene	< 0.50		ug/l	0.50	1				"	"	"	u .
1,2,4-Trichlorobenzene	< 0.50		ug/l	0.50	1	70			"	"	"	"
1,2,4-Trimethylbenzene	< 0.50		ug/l	0.50	1				"	"	"	"
t-Amyl methyl ether	< 0.50		ug/l	0.50	1			90	"	"	"	"
Dichlorodifluoromethan e	< 0.50		ug/l	0.50	1			1400	"	"	"	"
t-Butyl alcohol	< 25		ug/l	25	1			120	"	"	"	"
1,3-Dichlorobenzene	< 0.50		ug/l	0.50	1				"	"	"	"
1,2-Dichlorobenzene	< 0.50		ug/l	0.50	1	600			"	"	"	"
Bromochloromethane	< 0.50		ug/l	0.50	1				"	"	"	"
Bromoform	< 0.50		ug/l	0.50	1				"	"	"	"
1,1,1,2-Tetrachloroetha	< 0.50		ug/l	0.50	1				"	"	"	"
1,2-Dibromoethane	< 0.50		ug/l	0.50	1	0.05			"	"	"	m .
Bromobenzene	< 0.50		ug/l	0.50	1				"	"	"	m .
cis-1,3-Dichloropropen	< 0.50		ug/l	0.50	1				н	n	"	"
4-Methyl-2-pentanone	< 5.0		ug/l	5.0	1			350	"	"	"	II .
Acetone	< 10		ug/l	10	1			6300	n .	"	"	"
Trichloroethene	< 0.50		ug/l	0.50	1	5			m m	"	"	II .
Naphthalene	< 0.50		ug/l	0.50	1			140	"	"	"	"
Surrogate recoveries:												
4-Bromofluorobenzene (Surr)	86		80-1	20 %					"	"	"	"
1,2-Dichlorobenzene-d 4 (Surr)	92		80-1	20 %					"	"	"	"
Subcontracted Analyse Prepared by method E												
Analysis performed by P	hoenix Enviro	onmental Labs	, Inc. * - M	ACT007								
Nitrate as Nitrogen	0.81		mg/l	0.01	1	10			E300.0	18-Sep-20 00:33	18-Sep-20 00:33	M-PA009
Prepared by method E												
Analysis performed by P		onmental Labs										
Total Cyanide (Drinking water)			mg/l	0.005	1	0.2			E335.4	21-Sep-20	22-Sep-20 11:06	M-PA009
Subcontracted Analys Prepared by method E												
Analysis performed by P	hoenix Enviro	onmental Labs	. Inc. * - M	ACT007								
1,4-dioxane	< 0.20		ug/l	0.20	1			3	EPA522	18-Sep-20	21-Sep-20 16:37	M-PA009
Surrogate recoveries:							·					<u> </u>
% 1,4-dioxane-d8	83		70-1	30 %					"	"	"	

30-Sep-20 11:12 Page 14 of 28

Sample Identification 99 Old Orebed Rd SC59356-04				Client Project # Matrix 183TD20066 Drinking Water				Collection Da		Received 17-Sep-20			
SC59356-04 Analyte(s)	Result	Flag	Units	*RDL	Dilution	MCL	SMCL	ORSG	Method Ref.		Analyzed		Cert.
Total Metals by EPA 20	A Sarias Math												
Arsenic	< 0.00100	ious	mg/l	0.00100	1	0.01			EPA 200.8	21-Sep-20	24-Sep-20	pmh/edt	Х
Barium	0.00187		mg/l	0.00100	1	2			"	"	"		Х
Calcium	27.9		mg/l	0.500	1				EPA 200.7		24-Sep-20	EDT	Х
Cadmium	< 0.00050		mg/l	0.00050	1	0.005			EPA 200.8		24-Sep-20		
Chromium	< 0.00200		mg/l	0.00200	1	0.1			"		,		Х
Copper	0.0197		mg/l	0.00500	1	1.3	1		"		"	"	Х
Iron	< 0.100		mg/l	0.100	1		0.3		EPA 200.7	"	22-Sep-20	edt	Х
Mercury	< 0.00030	R06	mg/l	0.00030	1	0.002			EPA 245.1	21-Sep-20	23-Sep-20		Х
Manganese	< 0.00500		mg/l	0.00500	1		0.05		EPA 200.8		24-Sep-20		Х
Sodium	< 2.00		mg/l	2.00	1			20	EPA 200.7	,	22-Sep-20	•	Х
Lead	< 0.00100		mg/l	0.00100	1	0.015			EPA 200.8	"	24-Sep-20		Х
Selenium	< 0.00200		mg/l	0.00200	1	0.05			"	"	,		Х
Zinc	< 0.0100		mg/l	0.0100	1		5		"	"	"		Х
Subcontracted Analyses			· ·										
Analysis performed by E		nerica - Buffa	lo - M-NY	044									
Silver	< 0.50		ug/l	0.50	1		100		EPA 200.8	22-Sep-20 10:00	22-Sep-20 16:41	M-NY044	,
Subcontracted Analysis Prepared by method N													
Analysis performed by E	urofins TestAn	nerica - Buffa	lo - M-NY	044									
Chloride	0.65		mg/l	0.50	1		250		MCAWW 300.0_28D	21-Sep-20 22:36	21-Sep-20 22:36	M-NY044	
Sulfate	3.9		mg/l	2.0	1		250		"	"	"	"	
Analysis performed by E	urofins TestAn	ıerica - Buffa	lo - M-NY	044									
Chemical Oxygen Demand	< 10		mg/l	10	1				MCAWW 410.4	19-Sep-20 19:00	19-Sep-20 19:00	M-NY044	
Analysis performed by E	urofins TestAn	ıerica - Buffa	lo - M-NY	044									
Alkalinity, Total	79		mg/l	5.0	1				SM 2320B	23-Sep-20 15:27	23-Sep-20 15:27	M-NY044	
Analysis performed by E	urofins TestAn	ıerica - Buffa	lo - M-NY	044									
Total Dissolved Solids	< 10		mg/l	10	1				SM 2540C_Calcd	18-Sep-20 19:42	18-Sep-20 19:42	M-NY044	
Subcontracted Analyses Subcontracted Analyse													
Analysis performed by E		ster Laborato	ries Envir	onmental - N	1-P4009								
Bromomethane	< 0.50		ug/l	0.50	1			10	EPA-DW 524.2_Preserved	29-Sep-20 00:27	29-Sep-20 00:27	M-PA009	į
N-Propylbenzene	< 0.50		ug/l	0.50	1				_ "	"	"	"	
1,1-Dichloroethene	< 0.50		ug/l	0.50	1	7			"		"	"	
2-Chlorotoluene	< 0.50		ug/l	0.50	1				"		"	"	
trans-1,2-Dichloroethen e	< 0.50		ug/l	0.50	1	100			W.	"	"	"	
1,2,3-Trichloropropane	< 0.50		ug/l	0.50	1				"		•	"	
Isopropylbenzene	< 0.50		ug/l	0.50	1				"	"	"	"	
Ethylbenzene	< 0.50		ug/l	0.50	1	700			"			"	
di-Isopropyl ether	< 0.50		ug/l	0.50	1				"	"	"	"	
1,2-Dibromo-3-Chloropr opane	< 1.0		ug/l	1.0	1	0.2			п	"	"	"	
Toluene	< 0.50		ug/l	0.50	1	1000			"	"	"	"	
p-Isopropyltoluene	< 0.50		ug/l	0.50	1				"	"	"		

Sample Identification				Cli	ent Project	<u>#</u>	Mat	<u>rix</u>	Collection Da	ate/Time	Re	ceived	
99 Old Orebed Rd SC59356-04				·	3TD20066	_	Drinking		16-Sep-20			Sep-20	
Analyte(s)	Result	Flag	Units	*RDL	Dilution	MCL	SMCL	ORSG	Method Ref.	Prepared	Analyzed	Analyst	Cert.
Subcontracted Analyses													
Subcontracted Analyse				. 1 1	A D4000								
Analysis performed by Esta	urojins Lanca < 10	ster Laborato	ories Enviro ug/l	nmental - 1 10	<i>1-PA009</i> 1				EPA-DW	29-Sep-20	20 San 20	M DAGGO	
Acryloniune	~ 10		ug/i	10	'				524.2_Preserved	00:27	00:27	W-FA009	
1,2-Dichloropropane	< 0.50		ug/l	0.50	1	5			"	"	"	"	
trans-1,3-Dichloroprope	< 0.50		ug/l	0.50	1				"	"	"	"	
ne 4 Chlorataluana	< 0.50		ua/l	0.50	4				"	"			
4-Chlorotoluene 1,1,1-Trichloroethane	< 0.50 < 0.50		ug/l	0.50 0.50	1 1	200			"				
Chloroform	< 0.50		ug/l ug/l	0.50	1	200		70	"		"		
Freon 113	< 0.50			0.50	1			210000	"		"		
tert-Butylbenzene	< 0.50		ug/l ug/l	0.50	1			210000	"		"		
m&p-Xylene	< 1.0		ug/l	1.0	1						"	"	
1,2-Dichloroethane	< 0.50		ug/l	0.50	1	5					"	"	
1,3-Dichloropropane	< 0.50		ug/l	0.50	1	Ü					"	"	
Hexachlorobutadiene	< 0.50		ug/l	0.50	1				"		"		
Benzene	< 0.50		ug/l	0.50	1	5			"		"		
1,1-Dichloroethane	< 0.50		ug/l	0.50	1	Ü		70	"		"		
Methyl tertiary butyl	< 0.50		ug/l	0.50	1		40	70	"		"		
ether	1 0.00		ug/i	0.00	•		40	70					
Carbon tetrachloride	< 0.50		ug/l	0.50	1	5			"	"	"	"	
Dibromomethane	< 0.50		ug/l	0.50	1				"	"	"	"	
Methylene Chloride	< 1.0		ug/l	1.0	1	5			"	"	"	"	
o-Xylene	< 0.50		ug/l	0.50	1				"	"	"	"	
Ethyl t-butyl ether	< 0.50		ug/l	0.50	1				"	"	"	"	
Bromodichloromethane	< 0.50		ug/l	0.50	1				"	"	"	"	
Chloromethane	< 0.50		ug/l	0.50	1				"	"	"	"	
2,2-Dichloropropane	< 0.50		ug/l	0.50	1				"	"	"	"	
cis-1,2-Dichloroethene	< 0.50		ug/l	0.50	1	70			"	"	"	"	
Styrene	< 0.50		ug/l	0.50	1	100			"	"	"	"	
1,3,5-Trimethylbenzene	< 0.50		ug/l	0.50	1				"	"	"	"	
Vinyl chloride	< 0.50		ug/l	0.50	1	2			"	"	"	"	
1,1,2-Trichloroethane	< 0.50		ug/l	0.50	1	5			"	"	"	"	
1,1-Dichloropropene	< 0.50		ug/l	0.50	1				"	"	"	"	
n-Butylbenzene	< 0.50		ug/l	0.50	1				"	"	"	"	
Tentatively Identified Compound	None		ug/l		1				"	"	"	"	
Trichlorofluoromethane	< 0.50		ug/l	0.50	1				"		"		
Tetrachloroethene	< 0.50		ug/l	0.50	1	5			"	"	"		
Dibromochloromethane	< 0.50		ug/l	0.50	1	J			"	"	"	"	
2-Butanone	< 5.0		ug/l	5.0	1			4000	"	"	"		
1,2,3-Trichlorobenzene	< 0.50		ug/l	0.50	1			.550	n .	"	"	"	
Tetrahydrofuran	< 7.0		ug/l	7.0	1			1300	"	"	"	"	
Chloroethane	< 0.50		ug/l	0.50	1			.550	W	"		"	
2-Hexanone	< 5.0		ug/l	5.0	1				"	"		"	
Carbon disulfide	< 2.0		ug/l	2.0	1				W	"		"	
Chlorobenzene	< 0.50		ug/l	0.50	1	100			"	"	"	"	
Ethyl ether	< 0.50		ug/l	0.50	1				"	"	"	"	

Sample Identification 99 Old Orebed Rd SC59356-04					ent Project 3 3TD20066	<u>#</u>	<u>Matı</u> Drinking		Collection Da			ceived Sep-20
Analyte(s)	Result	Flag	Units	*RDL	Dilution	MCL	SMCL	ORSG	Method Ref.	Prepared	Analyzed	Analyst Cer
Subcontracted Analyse	·s											
Subcontracted Analys												
Analysis performed by E		ister Lahorato	ries Enviro	nmental - N	M_P4000							
1,1,2,2-Tetrachloroetha ne	< 0.50	sier Euboruio	ug/l	0.50	1				EPA-DW 524.2_Preserved	29-Sep-20 00:27	29-Sep-20 00:27	M-PA009
1,4-Dichlorobenzene	< 0.50		ug/l	0.50	1	75			- "	"	"	н
sec-Butylbenzene	< 0.50		ug/l	0.50	1				"	"	"	"
1,2,4-Trichlorobenzene	< 0.50		ug/l	0.50	1	70			"	"	"	
1,2,4-Trimethylbenzene	< 0.50		ug/l	0.50	1				"	"	"	"
t-Amyl methyl ether	< 0.50		ug/l	0.50	1			90	"	"	"	"
Dichlorodifluoromethan e	< 0.50		ug/l	0.50	1			1400	"	"	"	"
t-Butyl alcohol	< 25		ug/l	25	1			120	"	"	"	"
1,3-Dichlorobenzene	< 0.50		ug/l	0.50	1				"	"	"	"
1,2-Dichlorobenzene	< 0.50		ug/l	0.50	1	600			"	"	"	"
Bromochloromethane	< 0.50		ug/l	0.50	1				"	"	"	"
Bromoform	< 0.50		ug/l	0.50	1				"	"	"	"
1,1,1,2-Tetrachloroetha	< 0.50		ug/l	0.50	1				"	"	"	n
1,2-Dibromoethane	< 0.50		ug/l	0.50	1	0.05			"	"	"	"
Bromobenzene	< 0.50		ug/l	0.50	1				"	"	"	"
cis-1,3-Dichloropropen	< 0.50		ug/l	0.50	1				u	"	"	"
4-Methyl-2-pentanone	< 5.0		ug/l	5.0	1			350	"	"	"	"
Acetone	< 10		ug/l	10	1			6300	n n	"	"	II .
Trichloroethene	< 0.50		ug/l	0.50	1	5			m m	"	"	II .
Naphthalene	< 0.50		ug/l	0.50	1			140	"	"	"	"
Surrogate recoveries:												
4-Bromofluorobenzene (Surr)	91		80-1	20 %					"	"	"	"
1,2-Dichlorobenzene-d 4 (Surr)	95		80-1	20 %					"	n	"	"
Subcontracted Analyse Prepared by method E												
Analysis performed by P	Phoenix Enviro	onmental Labs	Inc. * - M	ACT007								
Nitrate as Nitrogen	0.10		mg/l	0.01	1	10			E300.0	18-Sep-20 00:38	18-Sep-20 00:38	M-PA009
Prepared by method E												
Analysis performed by P		onmental Labs	, Inc. * - M	ACT007								
Total Cyanide (Drinking water)	< 0.005		mg/l	0.005	1	0.2			E335.4	21-Sep-20	22-Sep-20 11:07	M-PA009
Subcontracted Analys Prepared by method E												
Analysis performed by P	Phoenix Enviro	onmental Labs	Inc. * - M	ACT007								
1,4-dioxane	< 0.20		ug/l	0.20	1			3	EPA522	18-Sep-20	21-Sep-20 16:53	M-PA009
Surrogate recoveries:												
% 1,4-dioxane-d8	89		70-1	30 %					"	"	"	"

30-Sep-20 11:12 Page 17 of 28

Sample Identification Trip					ent Project	<u>#</u>	<u>Matı</u>		Collection Da			ceived	
SC59356-05				18	3TD20066		Trip B	lank	16-Sep-20	00:00	17-	Sep-20	
Analyte(s)	Result	Flag	Units	*RDL	Dilution	MCL	SMCL	ORSG	Method Ref.	Prepared	Analyzed	Analyst	Cert.
Subcontracted Analyses													
Subcontracted Analyse		uatau I ahawata	nias Empina	um outal A	4 D4000								
Analysis performed by Et 1,1-Dichloroethane	< 0.50	sier Lavoraio	ug/l	0.50	<i>1</i> - <i>PA009</i>			70	EPA-DW 524.2_Preserved	28-Sep-20 18:09	28-Sep-20 18:09	M-PA009	i
1,1,1,2-Tetrachloroetha ne	< 0.50		ug/l	0.50	1				"	"	"	"	
1,1-Dichloropropene	< 0.50		ug/l	0.50	1				W	"	"	"	
1,1-Dichloroethene	< 0.50		ug/l	0.50	1	7			n	"	"	"	
1,1,1-Trichloroethane	< 0.50		ug/l	0.50	1	200			W		"	"	
1,1,2-Trichloroethane	< 0.50		ug/l	0.50	1	5			"	"	"	"	
1,1,2,2-Tetrachloroetha ne	< 0.50		ug/l	0.50	1				"	"	"	"	
1,2,4-Trichlorobenzene	< 0.50		ug/l	0.50	1	70			"	"	"	"	
1,2-Dibromoethane	< 0.50		ug/l	0.50	1	0.05			"	"	•	"	
1,2-Dichlorobenzene	< 0.50		ug/l	0.50	1	600			n	"	"	"	
1,2-Dichloropropane	< 0.50		ug/l	0.50	1	5			n	"	"	"	
1,2,4-Trimethylbenzene	< 0.50		ug/l	0.50	1				n	"	"	"	
1,2,3-Trichlorobenzene	< 0.50		ug/l	0.50	1				"	"	"	"	
1,2-Dibromo-3-Chloropr opane	< 1.0		ug/l	1.0	1	0.2			"	u	"	"	
1,2,3-Trichloropropane	< 0.50		ug/l	0.50	1				W .	"	"	"	
1,2-Dichloroethane	< 0.50		ug/l	0.50	1	5			"	"	"	"	
1,3-Dichloropropane	< 0.50		ug/l	0.50	1				W .	"	"	"	
1,3-Dichlorobenzene	< 0.50		ug/l	0.50	1				n	"	"	"	
1,3,5-Trimethylbenzene	< 0.50		ug/l	0.50	1				n	"	"	"	
1,4-Dichlorobenzene	< 0.50		ug/l	0.50	1	75			n	"	"	"	
2,2-Dichloropropane	< 0.50		ug/l	0.50	1				n	"	"	"	
2-Butanone	< 5.0		ug/l	5.0	1			4000	W .	"	"	"	
2-Chlorotoluene	< 0.50		ug/l	0.50	1				W .	"	"	"	
2-Hexanone	< 5.0		ug/l	5.0	1				W .	"	"	"	
4-Chlorotoluene	< 0.50		ug/l	0.50	1				W .	"	"	"	
4-Methyl-2-pentanone	< 5.0		ug/l	5.0	1			350	n	"	"		
Acetone	< 10		ug/l	10	1			6300	"	"	"	"	
Acrylonitrile	< 10		ug/l	10	1				"	"	"	"	
Benzene	< 0.50		ug/l	0.50	1	5			u u	"	"		
Bromochloromethane	< 0.50		ug/l	0.50	1				u u	"	"		
Bromoform	< 0.50		ug/l	0.50	1				u	"	"	"	
Bromobenzene	< 0.50		ug/l	0.50	1				n	"	"		
Bromomethane	< 0.50		ug/l	0.50	1			10	"	"	"	"	
Bromodichloromethane	< 0.50		ug/l	0.50	1				u	"	"	"	
Carbon disulfide	< 2.0		ug/l	2.0	1				u	"	"	"	
Carbon tetrachloride	< 0.50		ug/l	0.50	1	5			"	"	"	"	
Chlorobenzene	< 0.50		ug/l	0.50	1	100			"	"	"	"	
Chloromethane	< 0.50		ug/l	0.50	1				"	"	•	"	
Chloroform	< 0.50		ug/l	0.50	1			70	"	"	"	"	
Chloroethane	< 0.50		ug/l	0.50	1				"	"	"	"	
cis-1,3-Dichloropropen	< 0.50		ug/l	0.50	1				"	"	•	"	

Sample Identification Trip SC59356-05					ent Project # 3TD20066	<u>#</u>	<u>Matı</u> Trip B		Collection Da 16-Sep-20			ceived Sep-20	
Analyte(s)	Result	Flag	Units	*RDL	Dilution	MCL	SMCL	ORSG	Method Ref.	Prepared	Analyzed	Analyst	Cert.
Subcontracted Analyses	5												
Subcontracted Analyse	<u>es</u>												
Analysis performed by E	urofins Lanca	aster Laborato	ories Enviro	nmental - N	<i>A-PA009</i>								
cis-1,2-Dichloroethene	< 0.50		ug/l	0.50	1	70			EPA-DW 524.2_Preserved	28-Sep-20 18:09	28-Sep-20 18:09	M-PA009)
di-Isopropyl ether	< 0.50		ug/l	0.50	1				"	"	"	"	
Dibromochloromethane	< 0.50		ug/l	0.50	1				"	"	"	"	
Dibromomethane	< 0.50		ug/l	0.50	1				"	"	"	"	
Dichlorodifluoromethan e	< 0.50		ug/l	0.50	1			1400	п	"	"	"	
Ethyl ether	< 0.50		ug/l	0.50	1				n .	"	"	"	
Ethylbenzene	< 0.50		ug/l	0.50	1	700			"	"	"	"	
Ethyl t-butyl ether	< 0.50		ug/l	0.50	1				"	"	"	"	
Freon 113	< 0.50		ug/l	0.50	1			210000	"	"	"	"	
Hexachlorobutadiene	< 0.50		ug/l	0.50	1				"	"	"	"	
Isopropylbenzene	< 0.50		ug/l	0.50	1				"	"	"	"	
m&p-Xylene	< 1.0		ug/l	1.0	1				"	"	"	"	
Methyl tertiary butyl ether	< 0.50		ug/l	0.50	1		40	70	"	"	"	"	
Methylene Chloride	< 1.0		ug/l	1.0	1	5			"	"	"	"	
n-Butylbenzene	< 0.50		ug/l	0.50	1				"	"	"	"	
N-Propylbenzene	< 0.50		ug/l	0.50	1				"	"	"	"	
Naphthalene	< 0.50		ug/l	0.50	1			140	"	"	"	"	
o-Xylene	< 0.50		ug/l	0.50	1				"	"	"	"	
p-Isopropyltoluene	< 0.50		ug/l	0.50	1				"	"	"	"	
sec-Butylbenzene	< 0.50		ug/l	0.50	1				"	"	"	"	
Styrene	< 0.50		ug/l	0.50	1	100			"	"	"	"	
t-Amyl methyl ether	< 0.50		ug/l	0.50	1			90	"	"	"	"	
t-Butyl alcohol	< 25		ug/l	25	1			120	"	"	"	"	
Tentatively Identified Compound	None		ug/l		1				"	"	"	"	
tert-Butylbenzene	< 0.50		ug/l	0.50	1				"	"	"	"	
Tetrahydrofuran	< 7.0		ug/l	7.0	1			1300	"	"	"	"	
Tetrachloroethene	< 0.50		ug/l	0.50	1	5			"	"	"	"	
Toluene	< 0.50		ug/l	0.50	1	1000			"	"	"	"	
trans-1,3-Dichloroprope ne	< 0.50		ug/l	0.50	1				"	"	"	"	
trans-1,2-Dichloroethen e	< 0.50		ug/l	0.50	1	100			"	"	"	"	
Trichlorofluoromethane	< 0.50		ug/l	0.50	1				"	"	"	"	
Trichloroethene	< 0.50		ug/l	0.50	1	5			"	"	"	"	
Vinyl chloride	< 0.50		ug/l	0.50	1	2			п	"	"	"	
Surrogate recoveries:													
1,2-Dichlorobenzene-d 4 (Surr)	94		80-12	20 %					"	"	"	"	
4-Bromofluorobenzene (Surr)	91		80-12	20 %					"	"	"	"	

30-Sep-20 11:12 Page 19 of 28

Total Metals by EPA 200 Series Methods - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
EPA 200.7										
Batch 2001769 - EPA 200 Series										
Blank (2001769-BLK1)					Pre	pared: 21-	Sep-20 /	Analyzed: 22-S	Sep-20	
Iron	< 0.100		mg/l	0.100		•	•	,		
Sodium	< 2.00		mg/l	2.00						
Calcium	< 0.500		mg/l	0.500						
LCS (2001769-BS1)					Pre	nared: 21	Sen-20	Analyzed: 22-S	en-20	
Iron	9.89		mg/l	0.100	10.0	parod. 21	99	85-115	<u></u>	
Sodium	9.89		mg/l	2.00	10.0		99	85-115		
Calcium	10.3		mg/l	0.500	10.0		103	85-115		
Duplicate (2001769-DUP1)	10.0		Source: S			pared: 21		Analyzed: 22-S	on 20	
Sodium	0.716	J	mg/l	2.00	<u> </u>	0.730	3 6 p-20 /	Allalyzeu. ZZ-C	2	20
Iron	< 0.100	J	_	0.100		BRL			2	20
Calcium	28.5		mg/l mg/l	0.500		27.9			2	20
	20.3		· ·		Б.		0 00	A		20
Matrix Spike (2001769-MS1)	0.54		Source: So		· <u></u>	•		Analyzed: 22-S	ep-∠U	
Iron	2.54		mg/l	0.100	2.50	BRL 0.720	101	70-130		
Sodium Calcium	13.7 39.3		mg/l	2.00 0.500	12.5 12.5	0.730 27.9	104 92	70-130 70-130		
	39.3		mg/l	0.500	12.5	21.9	92	70-130		
EPA 200.8										
Batch 2001768 - EPA 200 Series										
Blank (2001768-BLK1)					Pre	epared: 21-	Sep-20 /	Analyzed: 24-S	ep-20	
Manganese	< 0.00500		mg/l	0.00500						
Zinc	< 0.0100		mg/l	0.0100						
Selenium	< 0.00200		mg/l	0.00200						
Lead	< 0.00100		mg/l	0.00100						
Chromium	< 0.00200		mg/l	0.00200						
Cadmium	< 0.00050		mg/l	0.00050						
Barium	< 0.00100		mg/l	0.00100						
Arsenic	< 0.00100		mg/l	0.00100						
Copper	< 0.00500		mg/l	0.00500						
LCS (2001768-BS1)					Pre	pared: 21-	Sep-20	Analyzed: 24-S	ep-20	
Zinc	0.0269		mg/l	0.0100	0.0250		108	85-115		
Selenium	0.0246		mg/l	0.00200	0.0250		99	85-115		
Lead	0.0255		mg/l	0.00100	0.0250		102	85-115		
Manganese	0.0258		mg/l	0.00500	0.0250		103	85-115		
Arsenic	0.0253		mg/l	0.00100	0.0250		101	85-115		
Copper	0.0250		mg/l	0.00500	0.0250		100	85-115		
Chromium	0.0248		mg/l	0.00200	0.0250		99	85-115		
Cadmium	0.0248		mg/l	0.00050	0.0250		99	85-115		
Barium	0.0247		mg/l	0.00100	0.0250		99	85-115		
<u>Duplicate (2001768-DUP1)</u>			Source: S	C59356-03	Pre	pared: 21-	Sep-20	Analyzed: 24-S	ep-20	
Lead	< 0.00100		mg/l	0.00100		BRL				20
Selenium	< 0.00200		mg/l	0.00200		BRL				20
Manganese	< 0.00500		mg/l	0.00500		BRL				20
Zinc	0.00344	J	mg/l	0.0100		0.00337			2	20
Chromium	0.00016	J	mg/l	0.00200		0.00015			1	20
Cadmium	< 0.00050		mg/l	0.00050		BRL				20
Barium	< 0.00100		mg/l	0.00100		BRL				20
Arsenic	0.00008	J,QR8	mg/l	0.00100		0.00012			34	20
Copper	0.00488	J	mg/l	0.00500		0.00479			2	20
Matrix Spike (2001768-MS1)			Source: So	C59356-03	Pre	pared: 21-	Sep-20	Analyzed: 24-S	ep-20	
Zinc	0.104	D	mg/l	0.0500	0.100	BRL	104	70-130		

Total Metals by EPA 200 Series Methods - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	
EDA 200 0										
EPA 200.8 Batch 2001768 - EPA 200 Series										
					_					
Matrix Spike (2001768-MS1)			Source: S	C59356-03	Pro			nalyzed: 24-S	ep-20	
Selenium	0.495	D	mg/l	0.0100	0.500	BRL	99	70-130		
Lead	0.0983	D	mg/l	0.00500	0.100	BRL	98	70-130		
Manganese	0.100	D	mg/l	0.0250	0.100	BRL	100	70-130		
Cadmium	0.0969	D	mg/l	0.00250	0.100	BRL	97	75-125		
Barium	0.0987	D	mg/l	0.00500	0.100	BRL	99	70-130		
Chromium	0.0970	D	mg/l	0.0100	0.100	BRL	97	70-130		
Copper	0.104	D	mg/l	0.0250	0.100	0.00479	99	70-130		
Arsenic	0.0830	D	mg/l	0.00500	0.100	BRL	83	70-130		
EPA 245.1										
Batch 2001770 - EPA 200 Series										
Blank (2001770-BLK1)					Pro	epared: 21-	Sep-20 A	nalyzed: 23-S	ep-20	
Mercury	< 0.00030		mg/l	0.00030						
LCS (2001770-BS1)					Pre	epared: 21-	Sep-20 A	nalyzed: 23-S	ep-20	
Mercury	0.00512		mg/l	0.00030	0.00500		102	85-115		
Matrix Spike (2001770-MS1)			Source: S	C59356-01	<u>Pr</u>	epared: 21-	Sep-20 A	nalyzed: 23-S	ep-20	
Mercury	0.00574		mg/l	0.00030	0.00500	BRL	115	80-120		
Post Spike (2001770-PS1)			Source: S	C59356-01	<u>Pr</u>	epared: 21-	Sep-20 A	nalyzed: 23-S	ep-20	
Mercury	0.00587	QC2	mg/l	0.00030	0.00500	BRL	117	85-115		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
EPA 200.8										
Batch 550554 - 200.8_P_TOT										
 Blank (5505541AB)					Pre	pared & A	nalyzed: 22	-Sep-20		
Silver	< 0.50		ug/l	0.50				-		
LCS (5505542AQ)					Pre	pared & A	nalyzed: 22	-Sep-20		
Silver	18.0		ug/l	0.50	20.0		90	85-115		
MCAWW 300.0 28D										
Batch 550457 - NONE										
LCS (5504573Q)					Pre	pared & A	nalyzed: 21	-Sep-20		
Sulfate	51.8		mg/l	2.0	50.0		104	90-110		
Chloride	53.7		mg/l	0.50	50.0		107	90-110		
Blank (5504574B)					Pre	pared & A	nalyzed: 21	-Sep-20		
Sulfate	< 2.0		mg/l	2.0				-		
Chloride	< 0.50		mg/l	0.50				-		
MCAWW 410.4										
Batch 550308 - NONE										
Blank (55030851B)					Pre	pared & A	nalyzed: 19	-Sep-20		
Chemical Oxygen Demand	< 10		mg/l	10		•	•	_		
LCS (55030852Q)			· ·		Pre	pared & A	nalyzed: 19	-Sep-20		
Chemical Oxygen Demand	24.7		mg/l	10	25.0	•	99	90-110		
Blank (55030875B)			Ü		Pre	pared & A	nalyzed: 19	-Sep-20		
Chemical Oxygen Demand	< 10		mg/l	10		•	•			
LCS (55030876Q)			· ·		Pre	pared & A	nalyzed: 19	-Sep-20		
Chemical Oxygen Demand	24.7		mg/l	10	25.0	•	99	90-110		
SM 2320B										
Batch 550927 - NONE										
Matrix Spike (1752891S)		9	Source: SC	*59356_01	Pre	nared & A	nalyzed: 23	-Sen-20		
Alkalinity, Total	183		mg/l	5.0	100	100	78	60-140		
<u>Duplicate (1752891X)</u>		s	Source: SC				nalyzed: 23			
Alkalinity, Total	106	<u> </u>	mg/l	5.0	110	100	iaryzca. zo	-	0.7	20
Blank (55092727B)			9		Pre		nalyzed: 23	-Sen-20		
Alkalinity, Total	< 5.0		mg/l	5.0	110	pared & A	lalyzed. 20	<u>-Оер-20</u> -		
LCS (55092728Q)	0.0		9,.	0.0	Pre	nared & A	nalyzed: 23			
Alkalinity, Total	96.3		mg/l	5.0	100	parca a 7 ti	96	90-110		
•	00.0		9,.	0.0				00 110		
SM 2540C Calcd										
Batch 550252 - NONE					Б			000		
Duplicate (1752891X) Total Discolved Solida	244	<u>5</u>	Source: SC		Pre	•	nalyzed: 18	-Sep-20	2	10
Total Dissolved Solids	211		mg/l	10	_	210		-	2	10
Blank (5502521B)	- 10		m a //	10	<u>Pre</u>	pared & Al	nalyzed: 18			
Total Dissolved Solids	< 10		mg/l	10	Б			-		
LCS (5502522Q)	494		m a //	10		pared & Al	nalyzed: 18			
Total Dissolved Solids	484		mg/l	10	502		96	85-115		
Batch 550253 - NONE		_			_					
Duplicate (1752894X)	. 46	<u>s</u>	Source: SC		Pre		nalyzed: 18	-Sep-20	NO	40
Total Dissolved Solids	< 10		mg/l	10		BRL		-	NC	10
Blank (5502531B)				40	<u>Pre</u>	pared & A	nalyzed: 18	-Sep-20		
Total Dissolved Solids	< 10		mg/l	10				-		
LCS (5502532Q)						pared & A	nalyzed: 18			
Total Dissolved Solids	490		mg/l	10	502		98	85-115		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
EPA-DW 524.2 Preserved										
Batch 48484 - NONE										
LCS (484844Q)					Pre	epared & Ar	nalyzed: 28-	Sep-20		
Carbon tetrachloride	4.91		ug/l	0.50	5.00	•	98	70-130		
Bromobenzene	4.77		ug/l	0.50	5.00		95	70-130		
4-Chlorotoluene	4.94		ug/l	0.50	5.00		99	70-130		
4-Methyl-2-pentanone	24.1		ug/l	5.0	25.0		96	70-130		
Acetone	38.3		ug/l	10	37.5		102	70-130		
2-Chlorotoluene	4.82		ug/l	0.50	5.00		96	70-130		
Acrylonitrile	110		ug/l	10	113		97	70-130		
2-Butanone	37.4		ug/l	5.0	37.5		100	70-130		
Benzene	4.76		ug/l	0.50	5.00		95	70-130		
2-Hexanone	25.1		ug/l	5.0	25.0		100	70-130		
Bromochloromethane	4.74		ug/l	0.50	5.00		95	70-130		
Bromodichloromethane	4.77		ug/l	0.50	5.00		95	70-130		
Bromoform	4.62		ug/l	0.50	5.00		92	70-130		
Carbon disulfide	4.62		ug/l	2.0	5.00		95	70-130		
Chlorobenzene	4.73		ug/l ug/l	0.50	5.00		95 97	70-130		
cis-1,3-Dichloropropene	4.73		ug/l	0.50	5.00		95	70-130		
Chloroethane	1.84		_	0.50	2.00		92	70-130		
Chloromethane	1.04		ug/l		2.00		92 88	70-130		
			ug/l	0.50	5.00		97	70-130 70-130		
1,2,4-Trimethylbenzene	4.84		ug/l	0.50						
2,2-Dichloropropane	4.83		ug/l	0.50	5.00		97	70-130		
Bromomethane	1.92		ug/l	0.50	2.00		96	70-130		
1,1,1,2-Tetrachloroethane	4.82		ug/l	0.50	5.00		96	70-130		
cis-1,2-Dichloroethene	5.00		ug/l	0.50	5.00		100	70-130		
Dibromochloromethane	4.78		ug/l	0.50	5.00		96	70-130		
1,2,4-Trichlorobenzene	5.09		ug/l	0.50	5.00		102	70-130		
1,2,3-Trichlorobenzene	5.15		ug/l	0.50	5.00		103	70-130		
1,1-Dichloropropene	4.83		ug/l	0.50	5.00		97	70-130		
1,1-Dichloroethene	4.82		ug/l	0.50	5.00		96	70-130		
1,1-Dichloroethane	4.80		ug/l	0.50	5.00		96	70-130		
1,1,2-Trichloroethane	4.79		ug/l	0.50	5.00		96	70-130		
1,2,3-Trichloropropane	5.05		ug/l	0.50	5.00		101	70-130		
1,1,1-Trichloroethane	4.82		ug/l	0.50	5.00		96	70-130		
1,4-Dichlorobenzene	4.84		ug/l	0.50	5.00		97	70-130		
1,2-Dibromo-3-Chloropropane	4.77		ug/l	1.0	5.00		95	70-130		
1,2-Dibromoethane	4.80		ug/l	0.50	5.00		96	70-130		
1,2-Dichlorobenzene	4.72		ug/l	0.50	5.00		94	70-130		
1,2-Dichloroethane	4.88		ug/l	0.50	5.00		98	70-130		
1,2-Dichloropropane	4.89		ug/l	0.50	5.00		98	70-130		
1,3,5-Trimethylbenzene	4.92		ug/l	0.50	5.00		98	70-130		
1,3-Dichlorobenzene	4.79		ug/l	0.50	5.00		96	70-130		
1,3-Dichloropropane	4.75		ug/l	0.50	5.00		95	70-130		
1,1,2,2-Tetrachloroethane	4.74		ug/l	0.50	5.00		95	70-130		
trans-1,2-Dichloroethene	4.80		ug/l	0.50	5.00		96	70-130		
p-Isopropyltoluene	5.02		ug/l	0.50	5.00		100	70-130		
sec-Butylbenzene	4.96		ug/l	0.50	5.00		99	70-130		
Styrene	4.92		ug/l	0.50	5.00		98	70-130		
t-Amyl methyl ether	4.81		ug/l	0.50	5.00		96	70-130		
t-Butyl alcohol	53.1		ug/l	25	50.0		106	70-130		
o-Xylene	4.80		ug/l	0.50	5.00		96	70-130		
Tetrahydrofuran	45.6		ug/l	7.0	46.9		97	70-130		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
EPA-DW 524.2 Preserved										
Batch 48484 - NONE										
LCS (484844Q)					Pre	epared & Aı	nalyzed: 28-	Sep-20		
Tetrachloroethene	5.14		ug/l	0.50	5.00	•	103	70-130		
trans-1,3-Dichloropropene	4.70		ug/l	0.50	5.00		94	70-130		
Trichloroethene	4.79		ug/l	0.50	5.00		96	70-130		
Trichlorofluoromethane	1.92		ug/l	0.50	2.00		96	70-130		
Vinyl chloride	1.87		ug/l	0.50	2.00		93	70-130		
Chloroform	4.82		ug/l	0.50	5.00		96	70-130		
Dibromomethane	4.74		ug/l	0.50	5.00		95	70-130		
tert-Butylbenzene	4.90		ug/l	0.50	5.00		98	70-130		
Ethylbenzene	4.72		ug/l	0.50	5.00		94	70-130		
Dichlorodifluoromethane	1.61		ug/l	0.50	2.00		80	70-130		
Toluene	4.86		-	0.50	5.00		97	70-130		
			ug/l		5.00		98	70-130		
N-Propylbenzene	4.91		ug/l	0.50						
Ethyl ether	5.52		ug/l	0.50	5.00		110	70-130		
Ethyl t-butyl ether	4.77		ug/l	0.50	5.00		95	70-130		
di-Isopropyl ether	4.55		ug/l	0.50	5.00		91	70-130		
Freon 113	4.43		ug/l	0.50	5.00		89	70-130		
Isopropylbenzene	4.89		ug/l	0.50	5.00		98	70-130		
m&p-Xylene	9.69		ug/l	1.0	10.0		97	70-130		
Methyl tertiary butyl ether	4.63		ug/l	0.50	5.00		93	70-130		
Methylene Chloride	4.69		ug/l	1.0	5.00		94	70-130		
Hexachlorobutadiene	5.20		ug/l	0.50	5.00		104	70-130		
Naphthalene	4.93		ug/l	0.50	5.00		99	70-130		
n-Butylbenzene	4.85		ug/l	0.50	5.00		97	70-130		
Surrogate: 4-Bromofluorobenzene (Surr)	4.99		ug/l		5.00		100	80-120		
Surrogate: 1,2-Dichlorobenzene-d4 (Surr)	4.78		ug/l		5.00		96	80-120		
Blank (484846B)					Pre	epared & Aı	nalyzed: 28-	Sep-20		
Bromochloromethane	< 0.50		ug/l	0.50				-		
Bromobenzene	< 0.50		ug/l	0.50				_		
cis-1,3-Dichloropropene	< 0.50		ug/l	0.50				_		
Benzene	< 0.50		ug/l	0.50				_		
Acetone	< 10		ug/l	10				_		
Bromodichloromethane	< 0.50		ug/l	0.50				_		
4-Methyl-2-pentanone	< 5.0		ug/l	5.0						
4-Chlorotoluene	< 0.50		ug/l	0.50				_		
	< 10			10				-		
Acrylonitrile Bromoform	< 0.50		ug/l					-		
			ug/l	0.50				-		
Bromomethane	< 0.50		ug/l	0.50				-		
Carbon disulfide	< 2.0		ug/l	2.0				-		
Carbon tetrachloride	< 0.50		ug/l	0.50				-		
Chlorobenzene	< 0.50		ug/l	0.50				-		
Chloroethane	< 0.50		ug/l	0.50				-		
Chloromethane	< 0.50		ug/l	0.50				-		
cis-1,2-Dichloroethene	< 0.50		ug/l	0.50				-		
2-Hexanone	< 5.0		ug/l	5.0				-		
1,1-Dichloropropene	< 0.50		ug/l	0.50				-		
Chloroform	< 0.50		ug/l	0.50				-		
1,2-Dibromoethane	< 0.50		ug/l	0.50				-		
1,1,1-Trichloroethane	< 0.50		ug/l	0.50				-		
1,1,2,2-Tetrachloroethane	< 0.50		ug/l	0.50				-		
1,1,2-Trichloroethane	< 0.50		ug/l	0.50						

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
EPA-DW 524.2 Preserved										
Batch 48484 - NONE										
Blank (484846B)					Pre	epared & Ar	nalyzed: 28-	Sep-20		
1,1-Dichloroethane	< 0.50		ug/l	0.50				_		
1,1-Dichloroethene	< 0.50		ug/l	0.50				_		
p-Isopropyltoluene	< 0.50		ug/l	0.50				_		
1,2,3-Trichlorobenzene	< 0.50		ug/l	0.50				_		
Dibromochloromethane	< 0.50		ug/l	0.50				_		
1,2,4-Trichlorobenzene	< 0.50		ug/l	0.50				_		
1,2,3-Trichloropropane	< 0.50		ug/l	0.50				_		
1,2-Dibromo-3-Chloropropane	< 1.0		ug/l	1.0				_		
2-Chlorotoluene	< 0.50		ug/l	0.50				_		
1,2-Dichlorobenzene	< 0.50		ug/l	0.50						
1,2-Dichloroethane	< 0.50		_	0.50				-		
			ug/l					-		
1,2-Dichloropropane	< 0.50		ug/l	0.50				-		
1,3,5-Trimethylbenzene	< 0.50		ug/l	0.50				-		
1,3-Dichlorobenzene	< 0.50		ug/l	0.50				-		
1,3-Dichloropropane	< 0.50		ug/l	0.50				-		
1,4-Dichlorobenzene	< 0.50		ug/l	0.50				-		
2,2-Dichloropropane	< 0.50		ug/l	0.50				-		
2-Butanone	< 5.0		ug/l	5.0				-		
1,2,4-Trimethylbenzene	< 0.50		ug/l	0.50				-		
tert-Butylbenzene	< 0.50		ug/l	0.50				-		
1,1,1,2-Tetrachloroethane	< 0.50		ug/l	0.50				-		
Vinyl chloride	< 0.50		ug/l	0.50				-		
Trichlorofluoromethane	< 0.50		ug/l	0.50				-		
Trichloroethene	< 0.50		ug/l	0.50				-		
trans-1,3-Dichloropropene	< 0.50		ug/l	0.50				-		
trans-1,2-Dichloroethene	< 0.50		ug/l	0.50				-		
Toluene	< 0.50		ug/l	0.50				-		
N-Propylbenzene	< 0.50		ug/l	0.50				-		
Tetrachloroethene	< 0.50		ug/l	0.50				-		
Dibromomethane	< 0.50		ug/l	0.50				_		
Tentatively Identified Compound	None		ug/l					_		
t-Butyl alcohol	< 25		ug/l	25				_		
t-Amyl methyl ether	< 0.50		ug/l	0.50				_		
Styrene	< 0.50		ug/l	0.50				_		
m&p-Xylene	< 1.0		ug/l	1.0				_		
sec-Butylbenzene	< 0.50		ug/l	0.50				_		
Ethyl ether	< 0.50		ug/l	0.50				_		
Ethyl t-butyl ether	< 0.50		ug/l	0.50				_		
•	< 0.50							-		
Ethylbenzene			ug/l	0.50				-		
Freon 113	< 0.50		ug/l	0.50				-		
Tetrahydrofuran	< 7.0		ug/l	7.0				-		
Isopropylbenzene	< 0.50		ug/l	0.50				-		
di-Isopropyl ether	< 0.50		ug/l	0.50				-		
Methyl tertiary butyl ether	< 0.50		ug/l	0.50				-		
Methylene Chloride	< 1.0		ug/l	1.0				-		
Dichlorodifluoromethane	< 0.50		ug/l	0.50				-		
Naphthalene	< 0.50		ug/l	0.50				-		
n-Butylbenzene	< 0.50		ug/l	0.50				-		
o-Xylene	< 0.50		ug/l	0.50				-		
Hexachlorobutadiene	< 0.50		ug/l	0.50				-		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
EPA-DW 524.2 Preserved										
Batch 48484 - NONE										
Blank (484846B)					<u>Pr</u>	epared & A	nalyzed: 28-	-Sep-20		

ug/l

ug/l

5.00

5.00

95

95

80-120

80-120

4.75

4.74

Surrogate: 1,2-Dichlorobenzene-d4 (Surr)

Surrogate: 4-Bromofluorobenzene (Surr)

Analyte(s)	Result	Flag Units	*RDL	Spike Level	Source Result %Rl	%REC EC Limits	RPD	RPD Limi
E300.0								
Batch 546064A - E300.0								
Blank (CG80254-BLK)				Pre	pared & Analyzed	l: 17-Sep-20		
Nitrate as Nitrogen	< 0.05	mg/l	0.05		BR	L -		
LCS (CG80254-LCS)				Pre	pared & Analyzed	l: 18-Sep-20		
Nitrate as Nitrogen	1.199	mg/l	0.05	301602262	106	.1 90-110		20
E335.4								
Batch 546272A - E335.4								
Blank (CG80189-BLK)				Pre	pared: 21-Sep-20	Analyzed: 22-S	ep-20	
Total Cyanide (Drinking water)	< 0.005	mg/l	0.005		BR	L -		
Duplicate (CG80189-DUP)		Source: So	C59356-01	Pre	pared: 21-Sep-20	Analyzed: 22-S	ep-20	
Total Cyanide (Drinking water)	< 0.005	mg/l	0.005		BRL	-	NC	20
LCS (CG80189-LCS)				Pre	pared: 21-Sep-20	Analyzed: 22-S	ep-20	
Total Cyanide (Drinking water)	0.3860	mg/l	0.005	0.405	95.	3 90-110		20
Matrix Spike (CG80189-MS)		Source: SO	C59356-01	<u>Pre</u>	pared: 21-Sep-20	Analyzed: 22-S	ep-20	
Total Cyanide (Drinking water)	0.2200	mg/l	0.005)00000298	BRL 11	90-110		20
EPA522								
Batch 546030A - EPA522								
Blank (CG77263-BLK)				Pre	pared: 18-Sep-20	Analyzed: 21-S	ep-20	
1,4-dioxane	ND	ug/l	0.20		NE) -		
Surrogate: % 1,4-dioxane-d8	93	ug/l		5	93	70-130		
LCS (CG77263-LCS)				Pre	pared: 18-Sep-20	Analyzed: 21-S	ep-20	
1,4-dioxane	4.273	ug/l	0.20	5	85	70-130		20
Surrogate: % 1,4-dioxane-d8	4.402	ug/l		5	88	3 70-130		
LCS Dup (CG77263-LCSD)		Source: Co	G77263-LC	S Prei	pared: 18-Sep-20	Analyzed: 21-S	ep-20	
1,4-dioxane	4.215	ug/l	0.20		84	70-130	1.2	20
Surrogate: % 1,4-dioxane-d8	4.267	ug/l		5	85	70-130		
5 ,		3		-				

Notes and Definitions

D Data reported from a dilution

QC2 Analyte out of acceptance range in QC spike but no reportable concentration present in sample.

QR8 Analyses are not controlled on RPD values from sample concentrations that are less than 5 times the reporting level. The

batch is accepted based upon the difference between the sample and duplicate is less than or equal to the reporting limit.

R06 MRL raised to correlate to batch QC reporting limits.

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

MCL EPA Maximum Contaminant Level, represents the maximum permissible level of a contaminant in drinking water.

SMCL EPA Secondary Maximum Contaminant Level, representing reasonable goals for drinking water. These standards are

developed to protect the aesthetic qualities of drinking water and are not health based. EPA recommends secondary standards to water systems but does not require systems to comply. However, states may choose to adopt them as

enforceable standards.

ORSG Office of Research and Standards Guideline. This is the concentration of a chemical in drinking water, at or below which,

adverse, non-cancer health effects are unlikely to occur after chronic (lifetime) exposure.

J Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

Matrix Spike: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification:</u> The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

S 59356 A

Spectrum Analytical CHAIN OF CUSTODY RE

eurofins :

Special Handling: Standard TAT - 7 to 10 business days Rush TAT - Date Needed:
--

Date: Date:	als: Present Intact Broken	eipt: Custody Seals:	Condition upon receipt:	R.D.#								
				Corection Factor	N.							
The Art Day Service Means of the Continues of the Continu	@arcassociates.	Todd don	. 1	Observed C. V	9336	7(00	13	1	1		No.	
To			EDD format:	Temp °C	Time:	Date:	/	I by:	// Received	by:	Relinquished	
To			1				7		>			
10 10 10 10 10 10 10 10												
Text												
To	- <0.3 ppl (va 11)	3		, G.	v				4,44			
To	The		2					4			(2	_
To	aks >5x Backson	×					9	Specture 3	6		2,	
Tox	detection	×	> >	×	5		9	1330	6	R	04 99	
To:	WAS MEK MIGKAGE	×	XXX	X	<i>S</i>	-	9	1300	162	Orehed Rd	V	
Invoice To: Continues Con	7 .	X	×	×	V	-	FIR D	1236	5	1Rd	1 CZ P	
To. Invoice To. In	DA. AS BE CE WIGGER	X	XX	X	7	-	-	1400	16	old arbed ad	135621 5	5
To Indicate the containers To Indicate the containers Invoice To Invoice Indicated Activity Information Invoice Indicated Activity Information Invoice Indicated Activity Information Invoice Indicated In		100 100 100 100 100 100 100 100 100 100	To			-		Time:	Date:	Sample ID:	Lab ID:	
To.	∏ier II*	1-0	Sta ota						C=Compsite		G= Grab	
To: Teach To A Te Invariant network for instructed to risking white the state of th	ASP A*	24.7 loxa	D CA I Me	Kalini Sulf Nitra	-				X3=	X2=	XI= DHA	
Invoice To: Same On	Standard No QC	10	Jals	ty			ر دوي العدد	l Gas			SO=Soil	0
Invoice To: Same Project No: & Site Name: Old	T Yes		Analysis		ntainers	Co	ler	W=Waste Wat		- }		Di
Invoice To: Same Or	adulional charges may applyiy	7 1 1 2	1115114	7						*		
Invoice To: ATC ATC Invoice To: Same Project No: Site Name: Od CH3)781-0070 PONo: PONo: Ouole # expression Sampler(s): YB: Teles Dan Ze Project No: Sampler(s): YB: Ouole # expression Sampler(s): YB: Ouole # expression Sampler(s): YB: Ouole # expression Sampler(s): Ouole # expression Ouole # ex	QA/QC Reporting Notes:	de below:	ist Preservative Co	Ľ			=Ascorbic Acid	=NaOH	=	\$2O ₃ 2 =HCl 3 =H ₂ SO ₄ 9=Deionized Water 10 =H ₃ PO ₄	Field Filtered 1=Na ₂ : CH3OH 8 =NaHSO ₄	7 <u>=</u>
Project No. 8 ATC PARK Invoice To: Same Date Sampler(s). Location: Sampler(s).	*	KB		F		O.		P.O No		Donte	4	Pro
ATC Invoice To: Same Project No: 18	2	Lanesbor	Location: Sampler(s):					,,		3.1		T _a
Invoice To: Same Project No. 18	ed Road Londfill	Old Dreb	Site Name:								1	
or	20066	18370	Project No:			Same	55	Invoice To		Donte	j	Re
	sposed after 30 days unless otherwise instructed.	Samples dis				of	Page					

Batch Summary

2001768

Total Metals by EPA 200 Series Methods

2001768-BLK1 2001768-BS1 2001768-DUP1 2001768-MS1

SC59356-01 (55 Old Orebed Rd) SC59356-02 (87 Old Orebed Rd) SC59356-03 (95 Old Orebed Rd) SC59356-04 (99 Old Orebed Rd)

2001769

Total Metals by EPA 200 Series Methods

2001769-BLK1 2001769-BS1 2001769-DUP1 2001769-MS1

SC59356-01 (55 Old Orebed Rd) SC59356-02 (87 Old Orebed Rd) SC59356-03 (95 Old Orebed Rd) SC59356-04 (99 Old Orebed Rd)

2001770

Total Metals by EPA 200 Series Methods

2001770-BLK1 2001770-BS1 2001770-MS1 2001770-PS1

SC59356-01 (55 Old Orebed Rd) SC59356-02 (87 Old Orebed Rd) SC59356-03 (95 Old Orebed Rd) SC59356-04 (99 Old Orebed Rd)

<u>48484</u>

Subcontracted Analyses

484844Q 484846B

SC59356-01 (55 Old Orebed Rd) SC59356-02 (87 Old Orebed Rd) SC59356-03 (95 Old Orebed Rd) SC59356-04 (99 Old Orebed Rd)

SC59356-05 (Trip)

546030A

Subcontracted Analyses

CG77263-BLK
CG77263-LCS
CG77263-LCSD
SC59356-01 (55 Old Orebed Rd)
SC59356-02 (87 Old Orebed Rd)
SC59356-03 (95 Old Orebed Rd)
SC59356-04 (99 Old Orebed Rd)

546064A

Subcontracted Analyses

CG80254-BLK CG80254-LCS

SC59356-01 (55 Old Orebed Rd) SC59356-02 (87 Old Orebed Rd) SC59356-03 (95 Old Orebed Rd) SC59356-04 (99 Old Orebed Rd)

546272A

Subcontracted Analyses

CG80189-BLK CG80189-DUP CG80189-LCS CG80189-MS

SC59356-01 (55 Old Orebed Rd) SC59356-02 (87 Old Orebed Rd) SC59356-03 (95 Old Orebed Rd) SC59356-04 (99 Old Orebed Rd)

550252

Subcontracted Analyses

1752891X 5502521B 5502522Q SC59356-01 (55

SC59356-01 (55 Old Orebed Rd) SC59356-02 (87 Old Orebed Rd) SC59356-03 (95 Old Orebed Rd)

<u>550253</u>

Subcontracted Analyses

1752894X 5502531B 5502532Q

SC59356-04 (99 Old Orebed Rd)

<u>550308</u>

Subcontracted Analyses

55030851B 55030852Q 55030875B 55030876Q

SC59356-01 (55 Old Orebed Rd) SC59356-02 (87 Old Orebed Rd) SC59356-03 (95 Old Orebed Rd) SC59356-04 (99 Old Orebed Rd)

550457

Subcontracted Analyses

5504573Q

5504574B

SC59356-01 (55 Old Orebed Rd)

SC59356-02 (87 Old Orebed Rd)

SC59356-03 (95 Old Orebed Rd)

SC59356-04 (99 Old Orebed Rd)

<u>550554</u>

Subcontracted Analyses

5505541AB

5505542AQ

SC59356-01 (55 Old Orebed Rd)

SC59356-02 (87 Old Orebed Rd)

SC59356-03 (95 Old Orebed Rd)

SC59356-04 (99 Old Orebed Rd)

550927

Subcontracted Analyses

1752891S

1752891X

55092727B

55092728Q

SC59356-01 (55 Old Orebed Rd)

SC59356-02 (87 Old Orebed Rd)

SC59356-03 (95 Old Orebed Rd)

SC59356-04 (99 Old Orebed Rd)

V	Final Report
	Revised Report

Report Date: 02-Oct-20 11:37

Laboratory Report SC59418

ATC Group Services, LLC 73 William Franks Drive West Springfield, MA 01089

Attn: Todd Donze

Project: Old Orebed Rd Landfill - Lanesborough, MA

Project #: 183TD20066

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Connecticut # PH-0722 Massachusetts # RI907 New Hampshire # 2240 New York # 11393 Rhode Island # LAI00368 USDA # P330-20-00109

Authorized by:

Agnes Huntley Project Manager

Cignisk Shoul

Eurofins Environment Testing New England holds primary NELAC certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 23 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Eurofins Environment Testing New England.

Eurofins Environment Testing New England is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Eurofins Environment Testing New England is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.eurofinsus.com/Spectrum for a full listing of our current certifications and fields of accreditation.

Please contact the Laboratory or Technical Director at 413-789-9018 with any questions regarding the data contained in this laboratory report.

Sample Summary

Work Order: SC59418

Project: Old Orebed Rd Landfill - Lanesborough, MA

Project Number: 183TD20066

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
SC59418-01	S-1	Surface Water	23-Sep-20 15:14	24-Sep-20 08:30
SC59418-02	Trip	Trip Blank	23-Sep-20 00:00	24-Sep-20 08:30

CASE NARRATIVE:

Data has been reported to the RDL. This report excludes estimated concentrations detected below the RDL and above the MDL (J-Flag).

All non-detects and all results below the reporting limit are reported as "<" (less than) the reporting limit in this report.

The samples were received 0.8 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of +/- 1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group. If method or program required MS/MSD/Dup were not performed, sufficient sample was not provided to the laboratory.

Due to possible microbial action or loss or gain of gases when the sample is exposed to air, the sampling recommendation for alkalinity or acidity suggests a separate bottle filled completely and capped tightly. When possible, testing for alkalinity or acidity is performed as soon as possible from the designated unopened, full container.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

EPA 245.1/7470A

Laboratory Control Samples:

2001835 BS

Mercury percent recovery 116 (85-115) is outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:

S-1

SW846 8260C

Laboratory Control Samples:

2001837 BS/BSD

Dichlorodifluoromethane (Freon12) percent recoveries (121/134) are outside individual acceptance criteria (70-130), but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:

S-1

Trip

2001837-BS1

Analyte is out of acceptance range in the QC spike but the total number of out of range analytes is within overall method criteria.

Ethanol

2001837-BSD1

Analyte is out of acceptance range in the QC spike but the total number of out of range analytes is within overall method criteria.

Dichlorodifluoromethane (Freon12)

Ethanol

Sample Acceptance Check Form

Client:	ATC Group Services, LLC - West Springfield, MA
Project:	Old Orebed Rd Landfill - Lanesborough, MA / 183TD20066
Work Order:	SC59418
Sample(s) received on:	9/24/2020

The following outlines the condition of samples for the attached Chain of Custody upon receipt.

	<u>Yes</u>	No	N/A
Were custody seals present?		\checkmark	
Were custody seals intact?			✓
Were samples received at a temperature of $\leq 6^{\circ}$ C?	\checkmark		
Were samples cooled on ice upon transfer to laboratory representative?	\checkmark		
Were sample containers received intact?	\checkmark		
Were samples properly labeled (labels affixed to sample containers and include sample ID, site location, and/or project number and the collection date)?	<u> </u>		
Were samples accompanied by a Chain of Custody document?	\checkmark		
Does Chain of Custody document include proper, full, and complete documentation, which shall include sample ID, site location, and/or project number, date and time of collection, collector's name, preservation type, sample matrix and any special remarks concerning the sample?	√		
Did sample container labels agree with Chain of Custody document?	\checkmark		
Were samples received within method-specific holding times?	\checkmark		

Summary of Hits

Lab ID: SC59418-01

Client ID: S-1

Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Calcium (dissolved)	37.8		0.500	mg/l	EPA 200.7
Iron (dissolved)	0.314		0.100	mg/l	EPA 200.7
Manganese (dissolved)	0.101		0.0100	mg/l	EPA 200.7
Sodium (dissolved)	4.09		2.00	mg/l	EPA 200.7
Alkalinity, Total	110		5.0	mg/l	SM 2320B
Total Dissolved Solids	160		5	mg/l	SM18-22 2540C
Chloride	11		1.0	mg/l	SW846 9251

Please note that because there are no reporting limits associated with hazardous waste characterizations or micro analyses, this summary does not include hits from these analyses if included in this work order.

Sample Io S-1 SC59418	dentification -01				Project # 020066		<u>Matrix</u> Surface Wa	·	ection Date 3-Sep-20 15			eceived Sep-20	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
	rganic Compounds by SW												
Prepared	by method SW846 5030 V	Vater MS											
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 1.00		μg/l	1.00	0.20	1	SW846 8260C	25-Sep-20	25-Sep-20	MED	2001837	X
67-64-1	Acetone	< 10.0		μg/l	10.0	0.90	1	"	"	"	"	"	Χ
107-13-1	Acrylonitrile	< 0.50		μg/l	0.50	0.36	1	"	"	"	"	"	Χ
71-43-2	Benzene	< 1.00		μg/l	1.00	0.25	1	"	"	"	"	"	Χ
108-86-1	Bromobenzene	< 1.00		μg/l	1.00	0.40	1	"	"	"	"	"	Χ
74-97-5	Bromochloromethane	< 1.00		μg/l	1.00	0.39	1	"	"	"	"	"	Χ
75-27-4	Bromodichloromethane	< 0.50		μg/l	0.50	0.33	1	"	"	"	"	"	Χ
75-25-2	Bromoform	< 1.00		μg/l	1.00	0.45	1	"	"	"	"	"	Х
74-83-9	Bromomethane	< 2.00		μg/l	2.00	0.63	1	"	"	"	"	"	Х
78-93-3	2-Butanone (MEK)	< 2.00		μg/l	2.00	0.58	1	"	"	"	"	"	Х
104-51-8	n-Butylbenzene	< 1.00		μg/l	1.00	0.45	1	"	"	"	"	"	Х
135-98-8	sec-Butylbenzene	< 1.00		μg/l	1.00	0.40	1	"	"	"	"	"	Х
98-06-6	tert-Butylbenzene	< 1.00		μg/l	1.00	0.40	1	"	"	"	"	"	Х
75-15-0	Carbon disulfide	< 2.00		μg/l	2.00	0.44	1	"	"	"	"		Х
56-23-5	Carbon tetrachloride	< 1.00		μg/l	1.00	0.25	1	"	"	"	"		Х
108-90-7	Chlorobenzene	< 1.00		μg/l	1.00	0.42	1	"	"	"	"		Х
75-00-3	Chloroethane	< 2.00		μg/l	2.00	0.40	1	"	"	"	"		Х
67-66-3	Chloroform	< 1.00		μg/l	1.00	0.30	1	"	u u	"	"	"	Х
74-87-3	Chloromethane	< 2.00		μg/l	2.00	0.48	1	"	u	"	"	"	Х
95-49-8	2-Chlorotoluene	< 1.00		μg/l	1.00	0.43	1	"	u	"	"	"	Х
106-43-4	4-Chlorotoluene	< 1.00		μg/l	1.00	0.42	1	"	"	"	"	"	Х
96-12-8	1,2-Dibromo-3-chloroprop	< 2.00		μg/l	2.00	0.51	1	u u	"	n	"	"	Х
124-48-1	Dibromochloromethane	< 0.50		μg/l	0.50	0.33	1	"	u	"	"	"	Х
106-93-4	1,2-Dibromoethane (EDB)	< 0.50		μg/l	0.50	0.34	1	"	"	"	"	"	Х
74-95-3	Dibromomethane	< 1.00		μg/l	1.00	0.36	1	"	"	"	"	"	Х
95-50-1	1,2-Dichlorobenzene	< 1.00		μg/l	1.00	0.48	1	"	"	"	"		Х
541-73-1	1,3-Dichlorobenzene	< 1.00		μg/l	1.00	0.50	1	"	"	"	"		Х
106-46-7	1,4-Dichlorobenzene	< 1.00		μg/l	1.00	0.49	1	"	"		"		Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.00		μg/l	2.00	0.39	1	n	"	"	"	"	X
75-34-3	1,1-Dichloroethane	< 1.00		μg/l	1.00	0.36	1	n .	u	"	"	"	Х
107-06-2	1,2-Dichloroethane	< 1.00		μg/l	1.00	0.26	1	n .	"	"	"	"	Х
75-35-4	1,1-Dichloroethene	< 1.00		μg/l	1.00	0.34	1	n .	"	"	"	"	Х
156-59-2	cis-1,2-Dichloroethene	< 1.00		μg/l	1.00	0.30	1	п	"	"	"	"	Х
156-60-5	trans-1,2-Dichloroethene	< 1.00		μg/l	1.00	0.19	1	"	"	"	"	"	Х
78-87-5	1,2-Dichloropropane	< 1.00		μg/l	1.00	0.36	1	"	"	"	"	"	Х
142-28-9	1,3-Dichloropropane	< 1.00		μg/l	1.00	0.32	1	п	"	"	"	"	Х
594-20-7	2,2-Dichloropropane	< 1.00		μg/l	1.00	0.49	1	"	"	"		"	Х
563-58-6	1,1-Dichloropropene	< 1.00		μg/l	1.00	0.29	1	"		"	"	"	X
10061-01-5	cis-1,3-Dichloropropene	< 0.50		μg/l	0.50	0.30	1	"		"	"	"	X
10061-02-6	trans-1,3-Dichloropropene	< 0.50		μg/l	0.50	0.37	1	"		"	"	"	X
100-41-4	Ethylbenzene	< 1.00		μg/l	1.00	0.36	1	11	"	"	"	"	X
87-68-3	Hexachlorobutadiene	< 1.00		μg/l	1.00	0.24	1	11	"	"	"	"	X
591-78-6	2-Hexanone (MBK)	< 2.00		μg/l	2.00	0.69	1	"	"				X

0.0055

0.0080

EPA 200.7

29-Sep-20 29-Sep-20

mg/l

< 0.0080

Arsenic

7440-38-2

2001834

edt

Sample Id S-1 SC59418-					<u>Project #</u> D20066	\$	<u>Matrix</u> Surface W	· · · · · · · · · · · · · · · · · · ·	-Sep-20 15			ceived Sep-20	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cei
Soluble M	etals by EPA 200 Series Met	thods											
7440-39-3	Barium	< 0.0100		mg/l	0.0100	0.0036	1	EPA 200.7	29-Sep-20	29-Sep-20	edt	2001834	Х
7440-70-2	Calcium	37.8		mg/l	0.500	0.0679	1		"	·	"	"	Х
7440-43-9	Cadmium	< 0.0050		mg/l	0.0050	0.0008	1		"	30-Sep-20	"	"	Х
7440-47-3	Chromium	< 0.0100		mg/l	0.0100	0.0038	1		"	29-Sep-20	"	"	Х
7440-50-8	Copper	< 0.0100		mg/l	0.0100	0.0058	1		"	30-Sep-20	•	"	Х
7439-89-6	Iron	0.314		mg/l	0.100	0.0201	1		"	u	"	"	Х
7439-97-6	Mercury	< 0.00020		mg/l	0.00020	0.00010	1	EPA 245.1/7470A	29-Sep-20	29-Sep-20	edt	2001835	X
7439-96-5	Manganese	0.101		mg/l	0.0100	0.0006	1	EPA 200.7	29-Sep-20	29-Sep-20	edt	2001834	Х
7440-23-5	Sodium	4.09		mg/l	2.00	0.248	1		"		"	"	Х
7439-92-1	Lead	< 0.0150		mg/l	0.0150	0.0068	1	· ·	"		"	"	Х
7782-49-2	Selenium	< 0.0300		mg/l	0.0300	0.0145	1	· ·	"		"	"	Х
7440-66-6	Zinc	< 0.0200		mg/l	0.0200	0.0054	1	· ·	"		"	"	Х
General C	hemistry Parameters												
	Total Dissolved Solids	160		mg/l	5	3	1	SM18-22 2540C	28-Sep-20	30-Sep-20	PN	2001857	X
Subcontra	Nitrate as Nitrogen	< 0.05		mg/l	0.05	0.05	1	E300.0	00:37	25-Sep-20 00:37	0.000		
Subcontra Subcontra Prepared Analysis pe			Environme			0.14	1	SW846	00:37 26-Sep-20	00:37 30-Sep-20			
Subcontra Subcontra Prepared Analysis pe 123-91-1	cted Analyses acted Analyses by method 3510C_LVI erformed by Eurofins Lancast 1,4-Dioxane	ter Laboratories	Environme	ntal - M-PA	1009				00:37	00:37			
Subcontra Subcontra Prepared Analysis po 123-91-1 Surrogate	cted Analyses acted Analyses by method 3510C_LVI erformed by Eurofins Lancast 1,4-Dioxane	ter Laboratories	Environme	ntal - M-PA	1009	0.14		SW846	00:37 26-Sep-20	00:37 30-Sep-20			
Subcontra Subcontra Prepared Analysis po 123-91-1 Surrogate 1 38072-94-5	cted Analyses acted Analyses by method 3510C_LVI erformed by Eurofins Lancast 1,4-Dioxane recoveries: 1-Methylnaphthalene-d10	ter Laboratories : < 0.28	Environme	ntal - M-PA	0.28	0.14		SW846 8270D_SIM	00:37 26-Sep-20 08:30	00:37 30-Sep-20 16:52		48041	
Subcontra Subcontra Prepared Analysis po 123-91-1 Surrogate of 38072-94-5 63466-71-7	cted Analyses acted Analyses by method 3510C_LVI erformed by Eurofins Lancast 1,4-Dioxane recoveries: 1-Methylnaphthalene-d10 (Surr) Benzo(a)pyrene-d12 (Surr)	ter Laboratories : < 0.28	Environme	ntal - M-PA	0.28 0.28 15-12	0.14		SW846 8270D_SIM	00:37 26-Sep-20 08:30	00:37 30-Sep-20 16:52		48041	
Subcontra Subcontra Prepared Analysis per 123-91-1 Surrogate 1 38072-94-5 63466-71-7 93951-69-0	acted Analyses by method 3510C LVI erformed by Eurofins Lancast 1,4-Dioxane recoveries: 1-Methylnaphthalene-d10 (Surr) Benzo(a)pyrene-d12 (Surr)	ter Laboratories . < 0.28 94 67	Environme	ntal - M-PA	0.28 0.28 15-12 10-13	0.14		SW846 8270D_SIM "	00:37 26-Sep-20 08:30	00:37 30-Sep-20 16:52		48041	
Subcontra Subcontra Prepared Analysis pe 123-91-1 Surrogate 1 38072-94-5 63466-71-7 93951-69-0 Subcontra	cted Analyses acted Analyses by method 3510C_LVI erformed by Eurofins Lancast 1,4-Dioxane recoveries: 1-Methylnaphthalene-d10 (Surr) Benzo(a)pyrene-d12 (Surr) Fluoranthene-d10 (Surr)	ter Laboratories : < 0.28 94 67 109		ntal - M-PA	0.28 0.28 15-12 10-13	0.14		SW846 8270D_SIM "	00:37 26-Sep-20 08:30	00:37 30-Sep-20 16:52		48041	
Subcontra Subcontra Prepared Analysis pe 123-91-1 Surrogate 1 38072-94-5 63466-71-7 93951-69-0 Subcontra Analysis pe	cted Analyses acted Analyses by method 3510C_LVI erformed by Eurofins Lancast 1,4-Dioxane recoveries: 1-Methylnaphthalene-d10 (Surr) Benzo(a)pyrene-d12 (Surr) Fluoranthene-d10 (Surr) cted Analyses	ter Laboratories : < 0.28 94 67 109		ntal - M-PA	0.28 0.28 15-12 10-13	0.14		SW846 8270D_SIM "	26-Sep-20 08:30	00:37 30-Sep-20 16:52 " " 30-Sep-20	M-PA009	48041	
Subcontra Subcontra Prepared Analysis pe 123-91-1 Surrogate 1 38072-94-5 63466-71-7 93951-69-0 Subcontra Analysis pe 7440-22-4	acted Analyses acted Analyses by method 3510C LVI erformed by Eurofins Lancast 1,4-Dioxane recoveries: 1-Methylnaphthalene-d10 (Surr) Benzo(a)pyrene-d12 (Surr) Fluoranthene-d10 (Surr) cted Analyses erformed by Eurofins TestAme	ter Laboratories < 0.28 94 67 109 erica - Buffalo - 1		ntal - M-PA ug/l	1009 0.28 15-12 10-13 34-12	0.14 21 % 88 %	1	SW846 8270D_SIM " "	26-Sep-20 08:30	00:37 30-Sep-20 16:52	M-PA009	48041	
Subcontra Subcontra Prepared Analysis pe 123-91-1 Surrogate 1 38072-94-5 63466-71-7 93951-69-0 Subcontra Analysis pe 7440-22-4 Prepared	acted Analyses by method 3510C_LVI erformed by Eurofins Lancast 1,4-Dioxane recoveries: 1-Methylnaphthalene-d10 (Surr) Benzo(a)pyrene-d12 (Surr) Fluoranthene-d10 (Surr) cted Analyses erformed by Eurofins TestAme Silver, Dissolved	erica - Buffalo - 1	M-NY044	ntal - M-PA ug/l	1009 0.28 15-12 10-13 34-12	0.14 21 % 88 %	1	SW846 8270D_SIM " "	26-Sep-20 08:30	00:37 30-Sep-20 16:52 " " 30-Sep-20	M-PA009	48041	
Subcontra Subcontra Prepared Analysis pe 123-91-1 Surrogate 1 38072-94-5 63466-71-7 93951-69-0 Subcontra Analysis pe 7440-22-4 Prepared	acted Analyses by method 3510C_LVI erformed by Eurofins Lancast 1,4-Dioxane recoveries: 1-Methylnaphthalene-d10 (Surr) Benzo(a)pyrene-d12 (Surr) Fluoranthene-d10 (Surr) cted Analyses erformed by Eurofins TestAme Silver, Dissolved by method NONE	erica - Buffalo - 1	M-NY044	ntal - M-PA ug/l	1009 0.28 15-12 10-13 34-12	0.14 21 % 88 %	1	SW846 8270D_SIM " "	26-Sep-20 08:30	00:37 30-Sep-20 16:52 " 30-Sep-20 19:45	M-PA009 " " " M-NY044	48041 " " " 551595	
Subcontra Subcontra Prepared Analysis pe 123-91-1 Surrogate 1 38072-94-5 63466-71-7 93951-69-0 Subcontra Analysis pe 7440-22-4 Prepared Analysis pe	cted Analyses by method 3510C_LVI erformed by Eurofins Lancast 1,4-Dioxane recoveries: 1-Methylnaphthalene-d10 (Surr) Benzo(a)pyrene-d12 (Surr) Fluoranthene-d10 (Surr) cted Analyses erformed by Eurofins TestAme Silver, Dissolved by method NONE erformed by Eurofins TestAme Chemical Oxygen	94 67 109 erica - Buffalo - P < 0.50 erica - Buffalo - P < 10	M-NY044 M-NY044	ntal - M-PA ug/l ug/l	0.28 0.28 15-12 10-13 34-12 0.50	0.14 21 % 88 % 0.036	1	SW846 8270D_SIM " " "	26-Sep-20 08:30 " " 29-Sep-20 09:20	00:37 30-Sep-20 16:52 " 30-Sep-20 19:45	M-PA009 " " " M-NY044	48041 " " " 551595	
Subcontra Subcontra Prepared Analysis pe 123-91-1 Surrogate 1 38072-94-5 63466-71-7 93951-69-0 Subcontra Analysis pe 7440-22-4 Prepared Analysis pe	cted Analyses by method 3510C_LVI erformed by Eurofins Lancast 1,4-Dioxane recoveries: 1-Methylnaphthalene-d10 (Surr) Benzo(a)pyrene-d12 (Surr) Fluoranthene-d10 (Surr) cted Analyses erformed by Eurofins TestAme Silver, Dissolved by method NONE erformed by Eurofins TestAme Chemical Oxygen Demand	94 67 109 erica - Buffalo - P < 0.50 erica - Buffalo - P < 10	M-NY044 M-NY044	ntal - M-PA ug/l ug/l	0.28 0.28 15-12 10-13 34-12 0.50	0.14 21 % 88 % 0.036	1	SW846 8270D_SIM " " "	26-Sep-20 08:30 " " 29-Sep-20 09:20 25-Sep-20 17:49 30-Sep-20	30-Sep-20 16:52 " " 30-Sep-20 19:45 25-Sep-20 17:49 30-Sep-20	M-PA009 " " M-NY044 M-NY044	48041 " " 551595	
Subcontra Subcontra Prepared Analysis pe 123-91-1 Surrogate 1 38072-94-5 63466-71-7 93951-69-0 Subcontra Analysis pe 7440-22-4 Prepared Analysis pe Analysis pe	acted Analyses by method 3510C_LVI erformed by Eurofins Lancast 1,4-Dioxane recoveries: 1-Methylnaphthalene-d10 (Surr) Benzo(a)pyrene-d12 (Surr) Fluoranthene-d10 (Surr) cted Analyses erformed by Eurofins TestAme Silver, Dissolved by method NONE erformed by Eurofins TestAme Chemical Oxygen Demand	er Laboratories (< 0.28 94 67 109 erica - Buffalo - 1 < 0.50 erica - Buffalo - 1 < 10 erica - Buffalo - 1	M-NY044 M-NY044	ug/l ug/l ug/l	0.28 0.28 15-12 10-13 34-12 0.50	0.14 21 % 88 % 0.036 5.0	1 1	SW846 8270D_SIM " " " EPA 200.8	26-Sep-20 08:30 " " 29-Sep-20 09:20 25-Sep-20 17:49	30-Sep-20 16:52 " " 30-Sep-20 19:45 25-Sep-20 17:49	M-PA009 " " M-NY044 M-NY044	48041 " " 551595	
Subcontra Subcontra Prepared Analysis pe 123-91-1 Surrogate 1 38072-94-5 63466-71-7 93951-69-0 Subcontra Analysis pe 7440-22-4 Prepared Analysis pe Analysis pe	cted Analyses by method 3510C_LVI erformed by Eurofins Lancast 1,4-Dioxane recoveries: 1-Methylnaphthalene-d10 (Surr) Benzo(a)pyrene-d12 (Surr) Fluoranthene-d10 (Surr) cted Analyses erformed by Eurofins TestAme Silver, Dissolved by method NONE erformed by Eurofins TestAme Chemical Oxygen Demand erformed by Eurofins TestAme Alkalinity, Total	94 67 109 erica - Buffalo - I < 10 erica - Buffalo - II < 10 erica - Buffalo - II 110	M-NY044 M-NY044 M-NY044	ug/l ug/l ug/l	0.28 0.28 15-12 10-13 34-12 0.50	0.14 21 % 88 % 0.036 5.0	1 1	SW846 8270D_SIM " " " EPA 200.8	26-Sep-20 08:30 " " 29-Sep-20 09:20 25-Sep-20 17:49 30-Sep-20	30-Sep-20 16:52 " " 30-Sep-20 19:45 25-Sep-20 17:49 30-Sep-20	M-PA009 " " M-NY044 M-NY044	48041 " " 551595	
Subcontra Subcontra Prepared Analysis pe 123-91-1 Surrogate 1 38072-94-5 63466-71-7 93951-69-0 Subcontra Analysis pe 7440-22-4 Prepared Analysis pe Analysis pe	acted Analyses by method 3510C LVI erformed by Eurofins Lancast 1,4-Dioxane recoveries: 1-Methylnaphthalene-d10 (Surr) Benzo(a)pyrene-d12 (Surr) Fluoranthene-d10 (Surr) cted Analyses erformed by Eurofins TestAme Silver, Dissolved by method NONE erformed by Eurofins TestAme Chemical Oxygen Demand erformed by Eurofins TestAme Alkalinity, Total by method METHOD	94 67 109 erica - Buffalo - I < 10 erica - Buffalo - II < 10 erica - Buffalo - II 110	M-NY044 M-NY044 M-NY044	ug/l ug/l ug/l	0.28 0.28 15-12 10-13 34-12 0.50	0.14 21 % 88 % 0.036 5.0	1 1	SW846 8270D_SIM " " " EPA 200.8	26-Sep-20 08:30 " " 29-Sep-20 09:20 25-Sep-20 17:49 30-Sep-20	30-Sep-20 16:52 " " 30-Sep-20 19:45 25-Sep-20 17:49 30-Sep-20 17:08	M-PA009 " " " M-NY044 M-NY044	48041 " " 551595 551410	
Subcontra Subcontra Prepared Analysis pe 123-91-1 Surrogate 1 38072-94-5 63466-71-7 93951-69-0 Subcontra Analysis pe 7440-22-4 Prepared Analysis pe Analysis pe Analysis pe 57-12-5	acted Analyses by method 3510C LVI erformed by Eurofins Lancast 1,4-Dioxane recoveries: 1-Methylnaphthalene-d10 (Surr) Benzo(a)pyrene-d12 (Surr) Fluoranthene-d10 (Surr) cted Analyses erformed by Eurofins TestAma Silver, Dissolved by method NONE erformed by Eurofins TestAma Chemical Oxygen Demand erformed by Eurofins TestAma Alkalinity, Total by method METHOD erformed by Eurofins TestAma Cyanide, Total	er Laboratories < 0.28 94 67 109 erica - Buffalo - I < 10 erica - Buffalo - I 110 erica - Buffalo - I the state of the state	M-NY044 M-NY044 M-NY044	ug/l ug/l mg/l	0.28 0.28 15-12 10-13 34-12 0.50	0.14 21 % 88 % 0.036 5.0	1 1 1	SW846 8270D_SIM " " " EPA 200.8 MCAWW 410.4 SM 2320B	26-Sep-20 08:30 " " 29-Sep-20 09:20 25-Sep-20 17:49 30-Sep-20 17:08	30-Sep-20 16:52 " " 30-Sep-20 19:45 25-Sep-20 17:49 30-Sep-20 17:08	M-PA009 " " " M-NY044 M-NY044	48041 " " 551595 551410	
Subcontra Subcontra Prepared Analysis pe 123-91-1 Surrogate 1 38072-94-5 63466-71-7 93951-69-0 Subcontra Analysis pe 7440-22-4 Prepared Analysis pe Analysis pe 57-12-5 Prepared	acted Analyses by method 3510C_LVI erformed by Eurofins Lancast 1,4-Dioxane Tecoveries: 1-Methylnaphthalene-d10 (Surr) Benzo(a)pyrene-d12 (Surr) Fluoranthene-d10 (Surr) cted Analyses erformed by Eurofins TestAme Silver, Dissolved by method NONE erformed by Eurofins TestAme Chemical Oxygen Demand erformed by Eurofins TestAme Alkalinity, Total by method METHOD erformed by Eurofins TestAme Alkalinity, Total	94 67 109 erica - Buffalo - I < 10 erica - Buffalo - I 110 erica - Buffalo - I 110 erica - Buffalo - I	M-NY044 M-NY044 M-NY044	ug/l ug/l mg/l	0.28 0.28 15-12 10-13 34-12 0.50	0.14 21 % 88 % 0.036 5.0	1 1 1	SW846 8270D_SIM " " " EPA 200.8 MCAWW 410.4 SM 2320B	26-Sep-20 08:30 " " 29-Sep-20 09:20 25-Sep-20 17:49 30-Sep-20 17:08	30-Sep-20 16:52 " " 30-Sep-20 19:45 25-Sep-20 17:49 30-Sep-20 17:08	M-PA009 " " " M-NY044 M-NY044	48041 " " 551595 551410	

Sample Id S-1 SC59418-	lentification 01			Client Pro			<u>Matrix</u> Surface Wa		ection Date 3-Sep-20 15	,		eived ep-20	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Subcontra	cted Analyses												
Analysis pe	erformed by Eurofins TestAme	erica - Buffalo - M	!-NY044										
16887-00-6	Chloride	11		mg/l	1.0	0.34	1	SW846 9251	29-Sep-20 03:23	29-Sep-20 03:23	M-NY044	551568	

 $This\ laboratory\ report\ is\ not\ valid\ without\ an\ authorized\ signature\ on\ the\ cover\ page.$ 02-Oct-20 11:37 Page 9 of 23

Sample Id Trip SC59418-	dentification -02				Project # 020066		<u>Matrix</u> Trip Blar	·	ection Date 3-Sep-20 00			sceived Sep-20	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
Volatile O	rganic Compounds by SW	<u>846 8260</u>											
Prepared	by method SW846 5030 V	Vater MS											
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 1.00		μg/l	1.00	0.20	1	SW846 8260C	25-Sep-20	25-Sep-20	MED	2001837	X
67-64-1	Acetone	< 10.0		μg/l	10.0	0.90	1	"	"	"	"	"	Χ
107-13-1	Acrylonitrile	< 0.50		μg/l	0.50	0.36	1	"	II .	"	"	"	Χ
71-43-2	Benzene	< 1.00		μg/l	1.00	0.25	1	"	"	"	"	"	Χ
108-86-1	Bromobenzene	< 1.00		μg/l	1.00	0.40	1	"	"	"	"	"	Χ
74-97-5	Bromochloromethane	< 1.00		μg/l	1.00	0.39	1	"	"	"	"	"	Χ
75-27-4	Bromodichloromethane	< 0.50		μg/l	0.50	0.33	1	"	"	"	"	"	Χ
75-25-2	Bromoform	< 1.00		μg/l	1.00	0.45	1	"	"	"	"	"	Χ
74-83-9	Bromomethane	< 2.00		μg/l	2.00	0.63	1	"	"	"	"	"	Χ
78-93-3	2-Butanone (MEK)	< 2.00		μg/l	2.00	0.58	1	"	n n	"	"	"	Χ
104-51-8	n-Butylbenzene	< 1.00		μg/l	1.00	0.45	1	"	n n	"	"	"	Χ
135-98-8	sec-Butylbenzene	< 1.00		μg/l	1.00	0.40	1	"	n n	"	"	"	Χ
98-06-6	tert-Butylbenzene	< 1.00		μg/l	1.00	0.40	1	"	n n	"	"	"	Χ
75-15-0	Carbon disulfide	< 2.00		μg/l	2.00	0.44	1	"	"	"	"	"	Χ
56-23-5	Carbon tetrachloride	< 1.00		μg/l	1.00	0.25	1	"	"	"	"	"	Χ
108-90-7	Chlorobenzene	< 1.00		μg/l	1.00	0.42	1	"	"	"	"	"	Х
75-00-3	Chloroethane	< 2.00		μg/l	2.00	0.40	1	"	"	"	"	"	Х
67-66-3	Chloroform	< 1.00		μg/l	1.00	0.30	1		"	"	"	"	Χ
74-87-3	Chloromethane	< 2.00		μg/l	2.00	0.48	1		"	"	"	"	Χ
95-49-8	2-Chlorotoluene	< 1.00		μg/l	1.00	0.43	1		"	"	"	"	Χ
106-43-4	4-Chlorotoluene	< 1.00		μg/l	1.00	0.42	1		"	"	"	"	Χ
96-12-8	1,2-Dibromo-3-chloroprop ane	< 2.00		μg/l	2.00	0.51	1	"	"	"	"	"	Х
124-48-1	Dibromochloromethane	< 0.50		μg/l	0.50	0.33	1	"	"	"		"	Х
106-93-4	1,2-Dibromoethane (EDB)	< 0.50		μg/l	0.50	0.34	1		"	"	"	"	Х
74-95-3	Dibromomethane	< 1.00		μg/l	1.00	0.36	1		"	"	"	"	Х
95-50-1	1,2-Dichlorobenzene	< 1.00		μg/l	1.00	0.48	1		"	"	"	"	Х
541-73-1	1,3-Dichlorobenzene	< 1.00		μg/l	1.00	0.50	1		"	"	"	"	Х
106-46-7	1,4-Dichlorobenzene	< 1.00		μg/l	1.00	0.49	1		"	"	"	"	Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.00		μg/l	2.00	0.39	1	"	"	п	"	"	Х
75-34-3	1,1-Dichloroethane	< 1.00		μg/l	1.00	0.36	1		"	"			Х
107-06-2	1,2-Dichloroethane	< 1.00		μg/l	1.00	0.26	1	"	"	"	"	"	Х
75-35-4	1,1-Dichloroethene	< 1.00		μg/l	1.00	0.34	1	"	"	"	"		Х
156-59-2	cis-1,2-Dichloroethene	< 1.00		μg/l	1.00	0.30	1	"	"	"	"		Х
156-60-5	trans-1,2-Dichloroethene	< 1.00		μg/l	1.00	0.19	1	"	"		"	"	X
78-87-5	1,2-Dichloropropane	< 1.00		μg/l	1.00	0.36	1	"	"	"	"	"	X
142-28-9	1,3-Dichloropropane	< 1.00		μg/l	1.00	0.32	1	"	"	"	"	"	X
594-20-7	2,2-Dichloropropane	< 1.00		μg/l	1.00	0.49	1	"	"	"	"	"	X
563-58-6	1,1-Dichloropropene	< 1.00		μg/l	1.00	0.29	1	u u	"	"	"	"	X
10061-01-5	cis-1,3-Dichloropropene	< 0.50		μg/l	0.50	0.30	1	"	"				X
10061-02-6	trans-1,3-Dichloropropene	< 0.50		μg/l	0.50	0.37	1	"	"				X
100-41-4	Ethylbenzene	< 1.00		μg/l	1.00	0.36	1	"	"		"	"	X
87-68-3	Hexachlorobutadiene	< 1.00		μg/l μg/l	1.00	0.36	1		"		"		X
591-78-6	2-Hexanone (MBK)	< 2.00		μg/l	2.00	0.69	1	,,			"		X

70-130 %

70-130 %

SW846 8260C

TICs

MED

μg/l

17060-07-0

1868-53-7

1.2-Dichloroethane-d4

Dibromofluoromethane

Tentatively Identified Compounds by GC/MS Tentatively Identified

Compounds

98

104

0.0

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SW846 8260 <u>C</u>										
Batch 2001837 - SW846 5030 Water MS										
					Dr	anared & Ai	nalyzed: 25-	Sen-20		
Blank (2001837-BLK1) 1,1,2-Trichlorotrifluoroethane (Freon 113)	< 1.00		ua/l	1.00	<u> </u>	spared & Al	iaiyzeu. zu-	<u> Зер-20</u>		
Acetone	< 10.0		μg/l μg/l	10.0						
Acrylonitrile	< 0.50			0.50						
•	< 1.00		μg/l	1.00						
Benzene			μg/l							
Bromobenzene	< 1.00		μg/l	1.00						
Bromochloromethane	< 1.00		μg/l	1.00						
Bromodichloromethane	< 0.50		μg/l	0.50						
Bromoform	< 1.00		μg/l 	1.00						
Bromomethane	< 2.00		μg/l	2.00						
2-Butanone (MEK)	< 2.00		μg/l	2.00						
n-Butylbenzene	< 1.00		μg/l	1.00						
sec-Butylbenzene	< 1.00		μg/l	1.00						
tert-Butylbenzene	< 1.00		μg/l	1.00						
Carbon disulfide	< 2.00		μg/l	2.00						
Carbon tetrachloride	< 1.00		μg/l	1.00						
Chlorobenzene	< 1.00		μg/l	1.00						
Chloroethane	< 2.00		μg/l	2.00						
Chloroform	< 1.00		μg/l	1.00						
Chloromethane	< 2.00		μg/l	2.00						
2-Chlorotoluene	< 1.00		μg/l	1.00						
4-Chlorotoluene	< 1.00		μg/l	1.00						
1,2-Dibromo-3-chloropropane	< 2.00		μg/l	2.00						
Dibromochloromethane	< 0.50		μg/l	0.50						
1,2-Dibromoethane (EDB)	< 0.50		μg/l	0.50						
Dibromomethane	< 1.00		μg/l	1.00						
1,2-Dichlorobenzene	< 1.00		μg/l	1.00						
1,3-Dichlorobenzene	< 1.00		μg/l	1.00						
1,4-Dichlorobenzene	< 1.00		μg/l	1.00						
Dichlorodifluoromethane (Freon12)	< 2.00		μg/l	2.00						
1,1-Dichloroethane	< 1.00		μg/l	1.00						
1,2-Dichloroethane	< 1.00		μg/l	1.00						
1,1-Dichloroethene	< 1.00		μg/l	1.00						
cis-1,2-Dichloroethene	< 1.00			1.00						
trans-1,2-Dichloroethene			μg/l							
	< 1.00		μg/l	1.00						
1,2-Dichloropropane	< 1.00		μg/l	1.00						
1,3-Dichloropropane	< 1.00		μg/l	1.00						
2,2-Dichloropropane	< 1.00		μg/l	1.00						
1,1-Dichloropropene	< 1.00		μg/l "	1.00						
cis-1,3-Dichloropropene	< 0.50		μg/l 	0.50						
trans-1,3-Dichloropropene	< 0.50		μg/l	0.50						
Ethylbenzene	< 1.00		μg/l	1.00						
Hexachlorobutadiene	< 1.00		μg/l	1.00						
2-Hexanone (MBK)	< 2.00		μg/l	2.00						
Isopropylbenzene	< 1.00		μg/l	1.00						
4-Isopropyltoluene	< 1.00		μg/l	1.00						
Methyl tert-butyl ether	< 1.00		μg/l	1.00						
4-Methyl-2-pentanone (MIBK)	< 2.00		μg/l	2.00						
Methylene chloride	< 2.00		μg/l	2.00						
Naphthalene	< 2.00		μg/l	2.00						
n-Propylbenzene	< 1.00		μg/l	1.00						

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SW846 8260C										
Batch 2001837 - SW846 5030 Water MS										
Blank (2001837-BLK1)					Pre	epared & A	nalyzed: 25-	Sep-20		
Styrene	< 1.00		μg/l	1.00						
1,1,1,2-Tetrachloroethane	< 1.00		μg/l	1.00						
1,1,2,2-Tetrachloroethane	< 0.50		μg/l	0.50						
Tetrachloroethene	< 1.00		μg/l	1.00						
Toluene	< 1.00		μg/l	1.00						
1,2,3-Trichlorobenzene	< 1.00		μg/l	1.00						
1,2,4-Trichlorobenzene	< 1.00		μg/l	1.00						
1,3,5-Trichlorobenzene	< 1.00		μg/l	1.00						
1,1,1-Trichloroethane	< 1.00		μg/l	1.00						
1,1,2-Trichloroethane	< 1.00		μg/l	1.00						
Trichloroethene	< 1.00		μg/l	1.00						
Trichlorofluoromethane (Freon 11)	< 1.00		μg/l	1.00						
1,2,3-Trichloropropane	< 1.00		μg/l	1.00						
1,2,4-Trimethylbenzene	< 1.00		μg/l	1.00						
1,3,5-Trimethylbenzene	< 1.00		μg/l	1.00						
Vinyl chloride	< 1.00		μg/l	1.00						
m,p-Xylene	< 2.00		μg/l	2.00						
o-Xylene	< 1.00		μg/l	1.00						
Tetrahydrofuran	< 2.00		μg/l	2.00						
Ethyl ether	< 1.00		μg/l	1.00						
Tert-amyl methyl ether	< 1.00		μg/l	1.00						
Ethyl tert-butyl ether	< 1.00		μg/l	1.00						
Di-isopropyl ether	< 1.00		μg/l	1.00						
Tert-Butanol / butyl alcohol	< 10.0		μg/l	10.0						
1,4-Dioxane	< 50.0		μg/l	50.0						
trans-1,4-Dichloro-2-butene	< 5.00		μg/l	5.00						
Ethanol	< 200		μg/l	200						
Surrogate: 4-Bromofluorobenzene	48.5		μg/l		50.0		97	70-130		
Surrogate: Toluene-d8	50.2		μg/l		50.0		100	70-130		
Surrogate: 1,2-Dichloroethane-d4	50.1		μg/l		50.0		100	70-130		
Surrogate: Dibromofluoromethane	52.3		μg/l		50.0		105	70-130		
LCS (2001837-BS1)					Pre	epared & A	nalyzed: 25-	Sep-20		
1,1,2-Trichlorotrifluoroethane (Freon 113)	23.8		μg/l		20.0		119	70-130		
Acetone	16.4		μg/l		20.0		82	70-130		
Acrylonitrile	19.1		μg/l		20.0		95	70-130		
Benzene	19.4		μg/l		20.0		97	70-130		
Bromobenzene	21.7		μg/l		20.0		108	70-130		
Bromochloromethane	21.5		μg/l		20.0		108	70-130		
Bromodichloromethane	19.6		μg/l		20.0		98	70-130		
Bromoform	22.0		μg/l		20.0		110	70-130		
Bromomethane	16.6		μg/l		20.0		83	70-130		
2-Butanone (MEK)	18.0		μg/l		20.0		90	70-130		
n-Butylbenzene	20.9		μg/l		20.0		105	70-130		
sec-Butylbenzene	16.8		μg/l		20.0		84	70-130		
tert-Butylbenzene	23.0		μg/l		20.0		115	70-130		
Carbon disulfide	23.9		μg/l		20.0		119	70-130		
Carbon tetrachloride	21.7		μg/l		20.0		108	70-130		
Chlorobenzene	22.1		μg/l "		20.0		111	70-130		
Chloroethane	18.8		μg/l		20.0		94	70-130		
Chloroform	19.6		μg/l		20.0		98	70-130		

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
W846 8260C										
atch 2001837 - SW846 5030 Water MS										
LCS (2001837-BS1)					Pre	epared & A	nalyzed: 25-	Sep-20		
Chloromethane	16.9		μg/l		20.0		84	70-130		
2-Chlorotoluene	21.6		μg/l		20.0		108	70-130		
4-Chlorotoluene	21.4		μg/l		20.0		107	70-130		
1,2-Dibromo-3-chloropropane	18.6		μg/l		20.0		93	70-130		
Dibromochloromethane	19.8		μg/l		20.0		99	70-130		
1,2-Dibromoethane (EDB)	21.6		μg/l		20.0		108	70-130		
Dibromomethane	20.6		μg/l		20.0		103	70-130		
1,2-Dichlorobenzene	22.1		μg/l		20.0		111	70-130		
1,3-Dichlorobenzene	22.0		μg/l		20.0		110	70-130		
1,4-Dichlorobenzene	20.8		μg/l		20.0		104	70-130		
Dichlorodifluoromethane (Freon12)	24.3		μg/l		20.0		121	70-130		
1,1-Dichloroethane	19.9		μg/l		20.0		100	70-130		
1,2-Dichloroethane	19.5		μg/l		20.0		98	70-130		
1,1-Dichloroethene	22.0		μg/l		20.0		110	70-130		
cis-1,2-Dichloroethene	21.2		μg/l		20.0		106	70-130		
trans-1,2-Dichloroethene	21.3		μg/l		20.0		107	70-130		
1,2-Dichloropropane	18.4		μg/l		20.0		92	70-130		
1,3-Dichloropropane	19.0		μg/l		20.0		95	70-130		
2,2-Dichloropropane	20.2		μg/l		20.0		101	70-130		
1,1-Dichloropropene	20.5		μg/l		20.0		102	70-130		
cis-1,3-Dichloropropene	19.3		μg/l		20.0		97	70-130		
trans-1,3-Dichloropropene	20.8		μg/l		20.0		104	70-130		
Ethylbenzene	21.2		μg/l		20.0		106	70-130		
Hexachlorobutadiene	21.2		μg/l		20.0		106	70-130		
2-Hexanone (MBK)	17.5		μg/l		20.0		87	70-130		
Isopropylbenzene	20.6		μg/l		20.0		103	70-130		
4-Isopropyltoluene	21.5		μg/l		20.0		108	70-130		
Methyl tert-butyl ether	17.9		μg/l		20.0		90	70-130		
4-Methyl-2-pentanone (MIBK)	17.5		μg/l		20.0		87	70-130		
Methylene chloride	20.2		μg/l		20.0		101	70-130		
Naphthalene	17.3		μg/l		20.0		87	70-130		
n-Propylbenzene	21.6		μg/l		20.0		108	70-130		
Styrene	22.2		μg/l		20.0		111	70-130		
1,1,1,2-Tetrachloroethane	22.3		μg/l		20.0		111	70-130		
1,1,2,2-Tetrachloroethane	22.2		μg/l		20.0		111	70-130		
Tetrachloroethene	23.9		μg/l		20.0		119	70-130		
Toluene	20.0		μg/l		20.0		100	70-130		
1,2,3-Trichlorobenzene	21.6		μg/l		20.0		108	70-130		
1,2,4-Trichlorobenzene	21.8		μg/l		20.0		109	70-130		
1,3,5-Trichlorobenzene	21.9		μg/l		20.0		110	70-130		
1,1,1-Trichloroethane	20.9		μg/l		20.0		104	70-130		
1,1,2-Trichloroethane	20.2				20.0		101	70-130		
Trichloroethene	17.9		μg/l μg/l		20.0		89	70-130		
Trichlorofluoromethane (Freon 11)	23.0		μg/l		20.0		115	70-130		
1,2,3-Trichloropropane	19.8		μg/l μg/l		20.0		99	70-130		
1,2,4-Trimethylbenzene	19.8 22.0				20.0		110	70-130 70-130		
1,3,5-Trimethylbenzene			μg/l		20.0		110	70-130 70-130		
•	21.9		µg/l							
Vinyl chloride	19.7		μg/l		20.0		98 116	70-130 70-130		
m,p-Xylene o-Xylene	46.3 22.2		μg/l μg/l		40.0 20.0		116 111	70-130 70-130		

analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SW846 8260C										
Batch 2001837 - SW846 5030 Water MS										
LCS (2001837-BS1)					Pre	epared & Ai	nalyzed: 25-	Sep-20		
Tetrahydrofuran	17.4		μg/l		20.0	•	87	70-130		
Ethyl ether	18.7		μg/l		20.0		94	70-130		
Tert-amyl methyl ether	18.3		μg/l		20.0		91	70-130		
Ethyl tert-butyl ether	18.7		μg/l		20.0		93	70-130		
Di-isopropyl ether	18.0		μg/l		20.0		90	70-130		
Tert-Butanol / butyl alcohol	189		μg/l		200		94	70-130		
1,4-Dioxane	219		μg/l		200		109	70-130		
trans-1,4-Dichloro-2-butene	15.2		μg/l		20.0		76	70-130		
Ethanol	362	QC6	μg/l		400		91	70-130		
Surrogate: 4-Bromofluorobenzene	50.4		μg/l		50.0		101	70-130		
Surrogate: Toluene-d8	50.0		μg/l		50.0		100	70-130		
Surrogate: 1,2-Dichloroethane-d4	48.7		μg/l		50.0		97	70-130		
Surrogate: Dibromofluoromethane	51.3		μg/l		50.0		103	70-130		
LCS Dup (2001837-BSD1)			. •			epared & A	nalyzed: 25-			
1,1,2-Trichlorotrifluoroethane (Freon 113)	24.8		μg/l		20.0	•	124	70-130	4	20
Acetone	20.0		μg/l		20.0		100	70-130	20	20
Acrylonitrile	20.6		μg/l		20.0		103	70-130	8	20
Benzene	20.2		μg/l		20.0		101	70-130	4	20
Bromobenzene	22.5		μg/l		20.0		112	70-130	4	20
Bromochloromethane	22.6		μg/l		20.0		113	70-130	5	20
Bromodichloromethane	20.4		μg/l		20.0		102	70-130	4	20
Bromoform	22.5		μg/l		20.0		112	70-130	2	20
Bromomethane	17.3		μg/l		20.0		87	70-130	4	20
2-Butanone (MEK)	18.4				20.0		92	70-130	2	20
n-Butylbenzene	21.8		μg/l		20.0		109	70-130	4	20
sec-Butylbenzene	17.3		μg/l		20.0		87	70-130	3	20
•			μg/l							
tert-Butylbenzene	24.2		μg/l		20.0		121	70-130	5	20
Carbon disulfide	24.9		μg/l		20.0		125	70-130	4	20
Carbon tetrachloride	22.5		μg/l "		20.0		113	70-130	4	20
Chlorobenzene	22.8		μg/l 		20.0		114	70-130	3	20
Chloroethane	20.1		μg/l "		20.0		100	70-130	7	20
Chloroform	20.1		μg/l		20.0		101	70-130	3	20
Chloromethane	17.9		μg/l		20.0		89	70-130	6	20
2-Chlorotoluene	22.2		μg/l		20.0		111	70-130	3	20
4-Chlorotoluene	22.0		μg/l		20.0		110	70-130	3	20
1,2-Dibromo-3-chloropropane	19.2		μg/l		20.0		96	70-130	3	20
Dibromochloromethane	20.5		μg/l		20.0		103	70-130	4	20
1,2-Dibromoethane (EDB)	22.4		μg/l		20.0		112	70-130	4	20
Dibromomethane	21.3		μg/l		20.0		106	70-130	3	20
1,2-Dichlorobenzene	23.0		μg/l		20.0		115	70-130	4	20
1,3-Dichlorobenzene	22.7		μg/l		20.0		113	70-130	3	20
1,4-Dichlorobenzene	21.6		μg/l		20.0		108	70-130	4	20
Dichlorodifluoromethane (Freon12)	26.7	QC6	μg/l		20.0		134	70-130	10	20
1,1-Dichloroethane	21.0		μg/l		20.0		105	70-130	5	20
1,2-Dichloroethane	20.4		μg/l		20.0		102	70-130	4	20
1,1-Dichloroethene	22.4		μg/l		20.0		112	70-130	2	20
cis-1,2-Dichloroethene	21.8		μg/l		20.0		109	70-130	3	20
trans-1,2-Dichloroethene	22.7		μg/l		20.0		113	70-130	6	20
1,2-Dichloropropane	19.4		μg/l		20.0		97	70-130	5	20
1,3-Dichloropropane	20.1		μg/l		20.0		101	70-130	6	20

analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
W846 8260C										
Satch 2001837 - SW846 5030 Water MS										
LCS Dup (2001837-BSD1)					Pre	epared & A	nalyzed: 25-	Sep-20		
2,2-Dichloropropane	20.5		μg/l		20.0		103	70-130	1	20
1,1-Dichloropropene	21.1		μg/l		20.0		105	70-130	3	20
cis-1,3-Dichloropropene	20.1		μg/l		20.0		101	70-130	4	20
trans-1,3-Dichloropropene	21.4		μg/l		20.0		107	70-130	3	20
Ethylbenzene	21.9		μg/l		20.0		109	70-130	3	20
Hexachlorobutadiene	22.8		μg/l		20.0		114	70-130	7	20
2-Hexanone (MBK)	18.1		μg/l		20.0		90	70-130	3	20
Isopropylbenzene	21.6		μg/l		20.0		108	70-130	5	20
4-Isopropyltoluene	23.0		μg/l		20.0		115	70-130	7	20
Methyl tert-butyl ether	18.8		μg/l		20.0		94	70-130	5	20
4-Methyl-2-pentanone (MIBK)	18.5		μg/l		20.0		93	70-130	6	20
Methylene chloride	20.6		μg/l		20.0		103	70-130	2	20
Naphthalene	17.7		μg/l		20.0		89	70-130	2	20
n-Propylbenzene	22.2		μg/l		20.0		111	70-130	3	20
Styrene	23.4		μg/l		20.0		117	70-130	5	20
1,1,1,2-Tetrachloroethane	23.0		μg/l		20.0		115	70-130	3	20
1,1,2,2-Tetrachloroethane	22.8		μg/l		20.0		114	70-130	3	20
Tetrachloroethene	24.8				20.0		124	70-130	4	20
Toluene			μg/l		20.0		104	70-130	4	20
	20.9		μg/l							
1,2,3-Trichlorehanne	22.7		μg/l		20.0		113	70-130	5	20
1,2,4-Trichlorobenzene	22.3		μg/l		20.0		112	70-130	2	20
1,3,5-Trichlorobenzene	23.3		μg/l "		20.0		116	70-130	6	20
1,1,1-Trichloroethane	21.4		μg/l "		20.0		107	70-130	3	20
1,1,2-Trichloroethane	21.2		μg/l "		20.0		106	70-130	5	20
Trichloroethene	19.0		μg/l "		20.0		95	70-130	6	20
Trichlorofluoromethane (Freon 11)	23.9		μg/l		20.0		120	70-130	4	20
1,2,3-Trichloropropane	20.4		μg/l		20.0		102	70-130	3	20
1,2,4-Trimethylbenzene	22.5		μg/l		20.0		112	70-130	2	20
1,3,5-Trimethylbenzene	22.9		μg/l		20.0		114	70-130	4	20
Vinyl chloride	21.4		μg/l		20.0		107	70-130	8	20
m,p-Xylene	47.8		μg/l		40.0		120	70-130	3	20
o-Xylene	22.6		μg/l		20.0		113	70-130	2	20
Tetrahydrofuran	17.8		μg/l		20.0		89	70-130	2	20
Ethyl ether	19.7		μg/l		20.0		98	70-130	5	20
Tert-amyl methyl ether	19.1		μg/l		20.0		95	70-130	4	20
Ethyl tert-butyl ether	19.1		μg/l		20.0		96	70-130	2	20
Di-isopropyl ether	18.7		μg/l		20.0		94	70-130	4	20
Tert-Butanol / butyl alcohol	176		μg/l		200		88	70-130	7	20
1,4-Dioxane	229		μg/l		200		114	70-130	5	20
trans-1,4-Dichloro-2-butene	15.9		μg/l		20.0		79	70-130	5	20
Ethanol	411	QC6	μg/l		400		103	70-130	12	20
Surrogate: 4-Bromofluorobenzene	50.5		μg/l		50.0		101	70-130		
Surrogate: Toluene-d8	49.4		μg/l		50.0		99	70-130		
Surrogate: 1,2-Dichloroethane-d4	48.8		μg/l		50.0		98	70-130		
Surrogate: Dibromofluoromethane	51.8		μg/l		50.0		104	70-130 70-130		
W846 8260C TICs	01.0		H9/1		50.0		10-7	, 5 , 50		
satch 2001837 - SW846 5030 Water MS										
Blank (2001837-BLK1)					Pre	epared & A	nalyzed: 25-	Sep-20		
Tentatively Identified Compounds	0.0		μg/l		<u> </u>		,			

Soluble Metals by EPA 200 Series Methods - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
EPA 200.7										
Batch 2001834 - EPA 200 Series										
Blank (2001834-BLK1)					Pre	epared & Ar	nalyzed: 29-	-Sep-20		
Selenium	< 0.0300		mg/l	0.0300						
Iron	< 0.100		mg/l	0.100						
Manganese	< 0.0100		mg/l	0.0100						
Sodium	< 2.00		mg/l	2.00						
Arsenic	< 0.0080		mg/l	0.0080						
Barium	< 0.0100		mg/l	0.0100						
Cadmium	< 0.0050		mg/l	0.0050						
Calcium	< 0.500		mg/l	0.500						
Chromium	< 0.0100		mg/l	0.0100						
Copper	< 0.0100		mg/l	0.0100						
Lead	< 0.0150		mg/l	0.0150						
Zinc	< 0.0200		mg/l	0.0200						
LCS (2001834-BS1)					Pre	epared & Ar	nalyzed: 29-	-Sep-20		
Selenium	4.80		mg/l	0.0300	5.00		96	85-115		
Iron	10.3		mg/l	0.100	10.0		103	85-115		
Manganese	4.94		mg/l	0.0100	5.00		99	85-115		
Sodium	10.0		mg/l	2.00	10.0		100	85-115		
Arsenic	4.80		mg/l	0.0080	5.00		96	85-115		
Barium	5.02		mg/l	0.0100	5.00		100	85-115		
Cadmium	4.83		mg/l	0.0050	5.00		97	85-115		
Calcium	10.3		mg/l	0.500	10.0		103	85-115		
Chromium	4.80		mg/l	0.0100	5.00		96	85-115		
Copper	4.78		mg/l	0.0100	5.00		96	85-115		
Lead	4.85		mg/l	0.0150	5.00		97	85-115		
Zinc	4.84		mg/l	0.0200	5.00		97	85-115		
Duplicate (2001834-DUP1)			Source: SO	C59418-01	Pre	epared & Ar	nalyzed: 29-	-Sep-20		
Selenium	< 0.0300		mg/l	0.0300		BRL				20
Iron	0.317		mg/l	0.100		0.314			1	20
Manganese	0.101		mg/l	0.0100		0.101			0.1	20
Sodium	4.06		mg/l	2.00		4.09			0.7	20
Arsenic	0.0055	J	mg/l	0.0080		0.0061				20
Barium	0.0051	J	mg/l	0.0100		0.0048			6	20
Cadmium	< 0.0050		mg/l	0.0050		BRL				20
Calcium	37.6		mg/l	0.500		37.8			0.5	20
Chromium	< 0.0100		mg/l	0.0100		BRL				20
Copper	< 0.0100		mg/l	0.0100		BRL				20
Lead	< 0.0150		mg/l	0.0150		BRL				20
Zinc	< 0.0200		mg/l	0.0200		BRL				20
Matrix Spike (2001834-MS1)			Source: SO	C59418-01	Pre	epared & Ar	nalyzed: 29-	-Sep-20		
Selenium	2.81		mg/l	0.0300	2.50	BRL	113	70-130		
Iron	3.08		mg/l	0.100	2.50	0.314	111	70-130		
Manganese	2.80		mg/l	0.0100	2.50	0.101	108	70-130		
Sodium	16.9		mg/l	2.00	12.5	4.09	102	70-130		
Arsenic	2.71		mg/l	0.0080	2.50	0.0061	108	70-130		
Barium	2.62		mg/l	0.0100	2.50	0.0048	105	70-130		
Cadmium	2.62		mg/l	0.0050	2.50	BRL	105	70-130		
Calcium	47.7		mg/l	0.500	12.5	37.8	79	70-130		
Chromium	2.62		mg/l	0.0100	2.50	BRL	105	70-130		
Copper	2.59		mg/l	0.0100	2.50	BRL	103	70-130		
Lead	2.65		mg/l	0.0150	2.50	BRL	106	70-130		

Soluble Metals by EPA 200 Series Methods - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
EPA 200.7										
Batch 2001834 - EPA 200 Series										
Matrix Spike (2001834-MS1)	Source: SC59418-01				Pre	epared & A				
Zinc	2.68		mg/l	0.0200	2.50	BRL	107	70-130		
EPA 245.1/7470A										
Batch 2001835 - EPA200/SW7000 Series										
Blank (2001835-BLK1)					Pre	epared & A	nalyzed: 29	-Sep-20		
Mercury	< 0.00020		mg/l	0.00020						
LCS (2001835-BS1)					Pre	epared & A	nalyzed: 29	-Sep-20		
Mercury	0.00579	QC2	ma/l	0.00020	0.00500		116	85-115		

General Chemistry Parameters - Quality Control

Analyte(s)	Result	Flag I	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SM18-22 2540C										
Batch 2001857 - General Preparation										
Blank (2001857-BLK1)					Pre	epared: 28-	Sep-20 A	Analyzed: 30-S	ep-20	
Total Dissolved Solids	< 5		mg/l	5						
LCS (2001857-BS1)					<u>Pre</u>	epared: 28-	Sep-20 <i>A</i>	Analyzed: 30-S	ep-20	
Total Dissolved Solids	930		mg/l	10	1000		93	90-110		
<u>Duplicate (2001857-DUP1)</u>		Soi	urce: S	C59418-01	Pre	epared: 28-9	Sep-20 A	Analyzed: 30-S	ep-20	
Total Dissolved Solids	166		mg/l	5		160			4	5

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit			
<u>E300.0</u>													
Batch 546995A - E300.0													
Blank (CG85127-BLK)					Pre	pared & An	alyzed: 24-	Sep-20					
Nitrate as Nitrogen	< 0.05		mg/l	0.05			BRL	-					
LCS (CG85127-LCS)				Prepared & Analyzed: 25-Sep-20									
Nitrate as Nitrogen	1.057		mg/l	0.05	016042780		93.5	90-110		20			

Subcontracted Analyses - Quality Control

analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
mary to(s)	Result	Tag	Cints	KDL	Level	Result	70KLC	Lillits	KI D	Liiiii
W846 8270D SIM										
Satch 48041 - 3510C_LVI										
Blank (480411AB)					<u>Pre</u>	epared: 26-	Sep-20 Ar	nalyzed: 30-S	Sep-20	
1,4-Dioxane	< 0.20		ug/l	0.20				-		
Surrogate: 1-Methylnaphthalene-d10 (Surr)	0.808		ug/l		1.00		81	15-121		
Surrogate: Benzo(a)pyrene-d12 (Surr)	0.662		ug/l		1.00		66	10-138		
Surrogate: Fluoranthene-d10 (Surr)	0.910		ug/l		1.00		91	34-125		
LCS (480412AQ)					<u>Pre</u>	epared: 26-	Sep-20 Ar	nalyzed: 30-S	Sep-20	
1,4-Dioxane	0.450		ug/l	0.20	1.00		45	18-91		
Surrogate: 1-Methylnaphthalene-d10 (Surr)	0.795		ug/l		1.00		79	15-121		
Surrogate: Benzo(a)pyrene-d12 (Surr)	0.823		ug/l		1.00		82	10-138		
Surrogate: Fluoranthene-d10 (Surr)	0.933		ug/l		1.00		93	34-125		
LCS Dup (480413AY)			Source: 48	0412AQ	Pre	epared: 26-	Sep-20 Ar	nalyzed: 30-S	Sep-20	
1,4-Dioxane	0.500		ug/l	0.20	1.00	0.450	50	18-91	11	30
Surrogate: 1-Methylnaphthalene-d10 (Surr)	0.791		ug/l		1.00		79	15-121		
Surrogate: Benzo(a)pyrene-d12 (Surr)	0.855		ug/l		1.00		86	10-138		
Surrogate: Fluoranthene-d10 (Surr)	0.972		ug/l		1.00		97	34-125		

Subcontracted Analyses - Quality Control

Analyte(s)	Result	Flag Unit	ts *RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPE Limi
EPA 200.8									
Batch 551595 - 200.8_P_TOT									
Blank (5515951AB)				<u>Pre</u>	epared: 29-	Sep-20 Ar	nalyzed: 30-S	ep-20	
Silver	< 0.50	ug/	0.50				-		
LCS (5515952AQ)				<u>Pre</u>	epared: 29-	Sep-20 Ar	nalyzed: 30-S	ep-20	
Silver	20.7	ug/	0.50	20.0		103	85-115		
LCS Dup (5515953AY)		Source	e: 5515952AQ	Pre	epared: 29-9	Sep-20 Ar	nalyzed: 30-S	ep-20	
Silver	21.1	ug/	0.50	20.0	20.7	105	85-115	2	20
MCAWW 410.4									
Batch 551410 - NONE									
Blank (55141076B)				Pre	epared & An	nalyzed: 25	-Sep-20		
Chemical Oxygen Demand	< 10	mg/	ï 10						
LCS (55141077Q)				Pre	epared & An	nalyzed: 25	-Sep-20		
Chemical Oxygen Demand	26.2	mg/	ï 10	25.0		105	90-110		
SM 2320B									
Batch 551957 - NONE									
Blank (55195728B)				Pre	epared & An	nalvzed: 30	-Sep-20		
Alkalinity, Total	< 5.0	mg/	íl 5.0	<u> </u>	paroa a 7 ti	idiy2od. oo	<u>-</u>		
LCS (55195729Q)	0.0	9	. 0.0	Pre	epared & An	alvzed: 30	-Sen-20		
Alkalinity, Total	98.2	mg/	íl 5.0	100	parca a 7 ti	98	90-110		
SW846 9012B		3							
Batch 551565 - METHOD		S	CCE0440 04	Dro	narad: 20 G	San 20 Ar	20 S	on 20	
<u>Matrix Spike (1755831S)</u> Cyanide, Total	0.106	· · · · · · · · · · · · · · · · · · ·	e: SC59418-01 0.010	0.100	BRL	100	nalyzed: 30-S 90-110	ep-20	
•	0.100	mg/	0.010					00	
Blank (5515651AB)	< 0.010	no. or 1	0.010	Pre	epared: 28-3	Sep-20 Ar	nalyzed: 30-S	ep-20	
Cyanide, Total	< 0.010	mg/	'I 0.010	Des	d- 00 (D 00 A-	- 	00	
<u>LCS (5515652AQ)</u> Cyanide, Total	0.248	mal	'I 0.010	0.250	epared: 28-	<u>5ep-20 Ar</u> 99	nalyzed: 30-S 90-110	ep-20	
	0.248	mg/	0.010	0.230		99	90-110		
SW846 9038									
Batch 551570 - NONE									
				Pre	epared & An	nalyzed: 29	-Sep-20		
Blank (551570121B)							_		
Blank (551570121B) Sulfate	< 5.0	mg/	['] I 5.0						
Sulfate LCS (551570122Q)	< 5.0	mg/			epared & An				
Sulfate	< 5.0 30.7	mg/		<u>Pre</u> 30.0	epared & An	nalyzed: 29 102	<u>-Sep-20</u> 90-110		
Sulfate LCS (551570122Q)					epared & An				
Sulfate LCS (551570122Q) Sulfate					epared & Ar				
Sulfate LCS (551570122Q) Sulfate SW846 9251				30.0	epared & An	102	90-110		
Sulfate <u>LCS (551570122Q)</u> Sulfate <u>SW846 9251</u> Batch 551568 - NONE			1 5.0	30.0		102	90-110		
Sulfate <u>LCS (551570122Q)</u> Sulfate <u>SW846 9251</u> Batch 551568 - NONE <u>LCS (551568114Q)</u>	30.7	mg/	1 5.0	30.0 <u>Pre</u> 25.0		102 nalyzed: 29 109	90-110 -Sep-20 90-110		
Sulfate LCS (551570122Q) Sulfate SW846 9251 Batch 551568 - NONE LCS (551568114Q) Chloride	30.7	mg/	1 5.0	30.0 <u>Pre</u> 25.0	epared & Ar	102 nalyzed: 29 109	90-110 -Sep-20 90-110		
Sulfate LCS (551570122Q) Sulfate SW846 9251 Batch 551568 - NONE LCS (551568114Q) Chloride Blank (551568115B)	30.7 27.2	mg/	1 5.0	30.0 Pre 25.0 Pre	epared & Ar	102 nalyzed: 29 109 nalyzed: 29	90-110 -Sep-20 90-110 -Sep-20 -		
Sulfate LCS (551570122Q) Sulfate SW846 9251 Batch 551568 - NONE LCS (551568114Q) Chloride Blank (551568115B) Chloride	30.7 27.2	mg/	1 5.0 1 1.0 1 1.0	30.0 Pre 25.0 Pre	epared & An	102 nalyzed: 29 109 nalyzed: 29	90-110 -Sep-20 90-110 -Sep-20 -		
Sulfate LCS (551570122Q) Sulfate SW846 9251 Batch 551568 - NONE LCS (551568114Q) Chloride Blank (551568115B) Chloride LCS (551568125Q)	27.2 < 1.0	mg/ mg/	1 5.0 1 1.0 1 1.0	25.0 Pre 25.0 Pre 25.0	epared & An	102 nalyzed: 29 109 nalyzed: 29 nalyzed: 29 109	90-110 -Sep-20 90-110 -Sep-20Sep-20 90-110		

02-Oct-20 11:37 Page 22 of 23

Notes and Definitions

QC2 Analyte out of acceptance range in QC spike but no reportable concentration present in sample.

QC6 Analyte is out of acceptance range in the QC spike but the total number of out of range analytes is within overall method

criteria.

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

J Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification:</u> The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

02-Oct-20 11:37 Page 23 of 23

e	eurofins Environment Testing New England	CHAIN OF CUSTODY RECORD		Special Handling: Standard TAT - 7 to 10 business days WRush TAT - Date Needed: All TATs subject to laboratory approval Min. 24-hr notification needed for rushes Samples disposed after 30 days unless otherwise instructed
Report To:	Todd Donze	Invoice To: SAME	Project No: Site Name:	1837D 20066 OH Grebed Road Land Fill
Telephone #: Project Mgr:	413-781-0070 Todd Donce	PONo.: Quote #: EXTRINE	Location: Sampler(s):	Large Sorange State: MA
F=Field Filtere	F=Field Filtered 1=Na ₂ S2O ₃ 2=HCl 3=H ₂ SO ₄ 4=HNO ₃ 5=NaOH	l 6=Ascorbic Acid		

# Ono: # EXTRINE # A=HNO, 5=NaOH 6=Ascorbic Acid # A=HNO, 5=NaOH	#=HNO, 5=NaOH 6=Ascorbic Acid #=HNO, 5=NaOH 6=Ascorbic Acid #=		Mit Alikeli.	Relinquished by:				•	200	94180 5-1	Lab ID: Sample ID:	G= Grab		SL=Sludge A=Indo	DW=Drinking Water GW=Groundwater	/~CIDOII O-MAIDOM >-Deloitized water in-lift.	60	Project Mgr: 7544 Donle
Ascorbic Acid Ascorbic Acid Type Type X Matrix Ascorbic Acid Ascorbic Acid X Matrix Ascorbic Acid X Matrix Containers Containers Containers W of Clear Glass # of Plastic Time: Time: Topo Observed Concection Factor Concecti	Assorbic Acid Assorbic Acid List Preservative Code before the following the followin	3		Received					9-23-2020	9-23-2020	Date:	C=Compsite		SG=			4=HNO ₃	3112e
Date: Date: Date: Time: Time: Time: Topic of Amber Glass # of Clear Glass # of Plastic Topic	Date: Date: Time: Time: Time: Temp of Ambient Convertion Feature Convertion Feature Convertion Feature Convertion Feature Convertion Temp of Condition upon receipt: Ambient List Preservative Code before Analysis Analysis X Dissolution upon receipt: X X X X X X X X X X X X X X X X X X X		1	by:	+				9.	G	Ту				ste Water	/ce	6=Ascorbic A	P.O No.:
Temp of Concertan Factor Concertan Facto	List Preservative Code before Analysis Analysis Analysis Chords Strate Analysis Analysis Chords Strate Analysis X X X X X X X X X X X X X		120		<i>y</i> 1		1			3 2	# of /	Amber Clear	· Glass		Containers			
	Preservative Code below: Analysis	0000	Factor	Temp °C	3.	74.				×	TD Chi	S, Poplar	Alkal le SU Cate Cager	inits Van	le le	11 11 3	List	Xtreme

This preceding chain of custody has been amended to include the client requested additional analyses as noted below:

Laboratory ID	Client ID	Analysis	Added
SC59418-02	Trip	Tentatively Identified Compounds by GC/MS	9/25/2020

Batch Summary

2001834

Soluble Metals by EPA 200 Series Methods

2001834-BLK1 2001834-BS1 2001834-DUP1 2001834-MS1 SC59418-01 (S-1)

<u>2001835</u>

Soluble Metals by EPA 200 Series Methods

2001835-BLK1 2001835-BS1 SC59418-01 (S-1)

2001837

Volatile Organic Compounds

2001837-BLK1 2001837-BSD1 2001837-BSD1 SC59418-01 (S-1) SC59418-02 (Trip)

2001857

General Chemistry Parameters

2001857-BLK1 2001857-BS1 2001857-DUP1 SC59418-01 (S-1)

48041

Subcontracted Analyses

480411AB 480412AQ 480413AY SC59418-01 (S-1)

546995A

Subcontracted Analyses

CG85127-BLK CG85127-LCS SC59418-01 (S-1)

<u>551410</u>

Subcontracted Analyses

55141076B 55141077Q SC59418-01 (S-1)

551565

Subcontracted Analyses

1755831S

5515651AB 5515652AQ SC59418-01 (S-1)

551568

Subcontracted Analyses

551568114Q 551568115B 551568125Q 551568126B SC59418-01 (S-1)

551570

Subcontracted Analyses

551570121B 551570122Q SC59418-01 (S-1)

<u>551595</u>

Subcontracted Analyses

5515951AB 5515952AQ 5515953AY SC59418-01 (S-1)

<u>551957</u>

Subcontracted Analyses

55195728B 55195729Q SC59418-01 (S-1)

APPENDIX E

WELL GAUGING AND FIELD PARAMETER LOG

ATC Group Services, LLC

73 William Franks Drive, West Springfield, Massachusetts 01089 MA: (413) 781-0070 FAX: (413) 781-3734

WELL GAUGING AND SAMPLING LOG

Client:	Tow	n of Lanesbor	ough							Job Numbe	er:	183TD20066			
Location:	Forr	ner Old Orebo	ed Road Lan	dfill	Date: 9/16/2020				Sheet 1 of 1						
Personnel:	Keve	en Brown - Er	nvironmenta	ntal Field Technician Weather Conditions: Partly Cloudy, 60°, NE @ 2 mph											
Well ID	D	Point of Reference (PVC/Rim)	Total Depth of Well (feet)	Depth to Water (feet)	Standing Water (feet)	Static Volume (gallons)	Water Volume Purged (gallons)	Odors (Y/N)	Color (Y/N)	Dissolved Oxygen (mg/L)	рН (S.U.)	Specific Conductivity (us/cm)	Temperature (°C)	Sample Time	Comments
MW-7	2	PVC	34.51	G	roundwater m	onitoring wel	l location gau	ged as dry and	l consequent	ly, a sample se	t was not col	lected during the	monitoring perio	od.	Locked, labeled, covered
MW-8	2	PVC	33.73	23.16	10.57	0.97	5.25	N	Y	5.37	7.31	3,745	13.13	5:30	Locked, labeled, covered
MW-16	2	PVC	46.28	27.43	18.85	1.73	9.25	N	Y	1.38	7.03	1,164	15.78	3:30	Locked, labeled, covered
MW-17	2	PVC	44.14	G	roundwater m	onitoring wel	l location gau	ged as dry and	l consequent	ly, a sample se	t was not col	lected during the	monitoring perio	od.	Locked, labeled, covered
MW-18	2	PVC	52.90	29.11	23.79	3.88	11.75	N	Y	4.07	7.44	677	14.68	3:00	Locked, labeled, covered
MW-101D	2	PVC	84.24	39.97	44.27	7.22	21.75	N	Y	2.24	7.90	1,525	15.73	10:50	Locked, labeled, covered
MW-103D	2	PVC	101.70	50.88	50.82	8.28	24.75	N	Y	1.44	7.77	1,789	16.38	11:45	Locked, labeled, covered
MW-104D	2	PVC	99.50	36.89	62.61	10.21	31.75	N	Y	0.88	7.72	1,743	18.99	10:00	Locked, labeled, covered
S-1*	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N	N	6.01	6.99	250	18.50	3:14	Surface Water
S-2	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N	N	5.46	8.05	750	17.51	2:30	Surface Water
55 Old Orebed Road	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N	N	1.17	8.05	788	16.96	2:00	Private Well
87 Old Orebed Road	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N	N	2.41	7.98	3,192	17.30	12:30	Private Well
95 Old Orebed Road	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N	N	2.43	7.71	2,448	19.77	1:00	Private Well
99 Old Orebed Road	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N	N	4.19	7.74	699	19.35	1:30	Private Well
Instrumento	tion	ક Equipment		Man	ıufacturer/M	odel	I.	D.	Calil	ration		Decon			Notes
Heron Wat	er Le	vel Indicator			Heron			5	N	I/A		Yes			
pH	/ °C N	leter		7	/SI Model 65	0			7	?es		Yes			
Specific C	onduc	tivity Meter		7	/SI Model 65	0			7	?es		Yes			
Dissolve	d Oxy	gen Meter		7	SI Model 65	0			Y	es!		Yes			

D = Well diameter in inches.

^{*} ATC inadvertently did not collect a sample at this location on September 16, 2020. On September 23, 2020, ATC returned to the site and collected the required sample.

Instruments Calibration

Project Number: 183TD20066 Date: September 16, 2020

Site: Old Orebed Road Landfill Task: 2

Instrument: CES Landtec GEM-5000 (Serial # G 502321) Pine Environmental Equipment,

Inc. Rental # 36248

Calibration Gas: Geotech Lot Number: 16 – 5792

Component

Concentration

Hydrogen Sulfide

25 ppm

Nitrogen

Balance

Calibration Gas: Geotech Lot Number: 16 – 5710

Component Concentration

Carbon Dioxide 15.0% Methane 15.0% Nitrogen Balance

OVM Calibrated: Yes

By signing below employee is certifying the instrument(s) indicated above has/have been calibrated and is/are functioning properly.

Personnel Calibrating Instrument(s): Keven Brown – Environmental Technician

Instrument Calibration Log

Project Number: 183TD20066 Date: September 16, 2020

Site: Old Orebed Road Landfill Task: 1

Instrument: YSI pH/Temp/Specific Conductivity/Dissolved Oxygen Meter with

Automatic Temperature Compensation (ATC) Model # 650 MDS

pH Calibration Buffers: (7&10) check in odd buffer:

Aqua Phoenix	pH Buffer	Lot No.	Exp Date	Reading
Pine	7.00	9GB719	Feb 2021	7.00
Pine	10.00	9GB956	Feb 2021	10.00

Conductivity Calibration Solution:

LabChem	Solution	Lot No.	Exp Date	Reading
LC187792	12.856 us/cm	H269-04	Sept 2020	12.88

Dissolved Oxygen Calibration:

Instrument Calibrated: Yes

By signing below employee is certifying the instrument(s) indicated above has/have been calibrated and is/are functioning properly.

Personnel Calibrating Instrument(s): Keven Brown – Environmental Technician

APPENDIX F

LANDFILL CAP INSPECTION PHOTOGRAPHS

