CITY OF GLENDALE

ARCHITECTURAL REVIEW BOARD GUIDELINES

ADOPTED BY ORDINANCE XX-23 MONTH, DAY, YEAR
Section 1 - Executive Summary

The Glendale ARB came into existence as a result of several factors:

- An economic shift in real estate that allowed the space necessary for people to buy and sell houses for the sole purpose of removal and replacement with new construction.
- A groundswell of concern on the part of Glendale citizens in regard to the scope of new construction.
- A concern on the part of Glendale citizens is that an effort be mounted to maintain the architectural design and flavor that makes the community unique in the metro area.
- A need to formalize the review process so that all involved would be operating under the same guidelines.

The purpose of this document is to give guidance to parties that want to present proposals to build in Glendale. It is designed to provide a structure from which to assemble and submit such proposals.

No two structures, additions, lots, landscapes nor drainage patterns are the same. The purpose of the Glendale ARB is not to create rigid uniformity within the community, rather to put forth a road map that can be followed by any individual, architect, or builder so that they can propose and complete a project that will be visually pleasing and sympathetic with the surrounding neighborhood.

No ARB, whether in Glendale or elsewhere is omnipotent. We exist to try and blend the wants and needs of many involved parties. If we achieve this, projects built in our community will be pleasing while at the same time meeting the aspirations of all involved while respecting the rights of property owners.
Section 2 – Preface

The City of Glendale has always prided itself in offering high quality housing opportunities. The Architectural Review Board is charged with improving the architectural integrity of housing in the community by ensuring compatibility of new and renovated homes with existing neighborhoods and ensuring that proposed designs preserve the order, function, green space, and beauty of our streets. To ensure that new construction meets high quality standards and is in general conformity within the context of surrounding structures, the ARB considers all exterior aspects of a structure and its location. The ARB’s charge is “to assure that new construction is of high-quality design and materials and is generally harmonious with the quality and design of surrounding structures.”

The review of a project will consider issues of context and scale that are relevant to the specific location of the project site. This includes understanding the neighborhood qualities of the project location and the relative size of the project with respect to existing neighboring properties. Assessing a good fit with neighborhood context and scale will involve both subjective judgments and objective measurements. The criteria that the ARB considers when weighing these factors are further detailed in Sections 4 and 5 of these guidelines.

Performance requirements are reviewed by the ARB evaluating the Site Design, the Landscape Design, and the Architectural Design of a proposed project. Criteria used by the ARB in determining approval are outlined in Sections 6, 7, and 8 of these guidelines. The guidelines presented in these sections will help applicants and their architects, engineers, and builders to prepare a design that is compliant with relevant standards, best practices, and neighborhood concerns that are routinely considered by the ARB in determining approval of an applicant’s project.

The primary goal of the ARB is to preserve and extend the unique character, quality, and value of the Glendale community as new homes are built and existing homes are transformed by renovation. That character is not easily summarized in a short description. The community is home to a wide variety of architectural styles. There are homes of varying sizes and scale, blended within Glendale’s streets and blocks and most manage to co-exist harmoniously. There are definite patterns of public and private space in the city’s streets and yards, and patterns of land use for walking, driving, and parking, for play and for social life. The most important characteristics of a successful design will include the following:

- Respect for the patterns of neighborhood qualities as they are recognized at each project site.
- Preservation of the great qualities of Glendale streetscape.
- Considerate planning of a home’s functions on the site, including drives and parking, organization of public and private family spaces, pedestrian movement, and creating welcoming entries that are easy to access.
• Good management of storm water, utilities, and respect for the lay of the land as a site connects to streets and neighboring home sites.

• Good stewardship and development of land, lawn, and landscape assets

• Architecture that is developed with integrity of expression, where the whole and the parts of the design work together to create a unified home presented to the street and to neighboring properties on all sides.

• Sensible use of quality building materials.

We welcome homeowners and builders who want to create a better Glendale, preserving great qualities and enhancing our neighborhoods with creative ideas for living. We are excited to see every proposal from our current and future neighbors!
Section 3 – Submittal Procedures and Definitions

Applications to the Architectural Review Board should be submitted to the city administrator and should follow the submittal procedure and guidelines defined in this Section and detailed in the City’s Municipal Code, Title V, Chapter 535 Architectural Review Board. References to Sections in the Code refer to this published document. The Municipal Code may be viewed online by going to the following link:

https://ecode360.com/29355791

Process: Applications to the ARB for review will follow the process outlined below.

3A - Procedure Outline

1. The Applicant will prepare a complete application and submit it to the City Hall Administration Office for review. The application will be complete, will contain the required forms, the required number of copies shall be included, and it shall be accompanied by the designated fee, all as defined in Sections 535.060 and 535.070. Incomplete applications will not be scheduled on the ARB agenda. The city administrator or designee will notify an applicant of any deficiencies in their application.
   a. The applicant may request a pre-application meeting with the city administrator. A pre-application meeting should be scheduled no later than 7 days in advance of a submittal deadline.

2. The applicant must submit 21 calendar days in advance of a scheduled ARB meeting. Applications shall be submitted by 4pm on the day of the deadline.

3. The applicant will be notified by the city administrator or its deputy clerk that their application has been accepted and scheduled for review by the ARB, and the date upon which the applicant must appear to present their proposal. Should an application be judged incomplete, the applicant will be notified that it is being held for incompletion and how to remedy any problems or missing information. Additional application materials must be submitted 7 days in advance of a scheduled ARB meeting, or the application will be delayed until such time that it is made complete.
   a. The City must issue public notice of Architectural Review Board meetings and agendas to neighboring properties of project locations. Failure to resolve application deficiencies before the 7-day time frame prevents a project from being identified in the public notice, and therefore being included in the meeting agenda.

4. The ARB will receive applications in advance and review them prior to its scheduled meetings in order to have an informed discussion of the proposals and any questions that may arise.
5. The applicant or designated representative must appear in person or via pre-arranged video conference technology at the ARB meeting. Failure to appear will result in being removed from the ARB meeting agenda.

6. The ARB may ask questions of the applicant and / or its representative at the meeting and will discuss its observations regarding the strengths or weaknesses of the proposed design.

7. The ARB will indicate its decision regarding an application in a two-reading process, as follows:

   a. The application may be approved with no comments in the first reading of a motion to approve. It will proceed immediately to a second reading of the motion for a vote of final approval.

   b. The application may be approved with conditions set by the ARB for compliance in the first reading of a motion to approve. It will proceed immediately to a second reading of the motion to approve with conditions for a vote of final approval.

   c. The ARB may make a motion to postpone an application with recommendations for improvement of unsatisfactory design conditions in the first reading. The applicant may then revise its design and schedule a second reading at the next ARB meeting. The ARB will review the changes implemented by the applicant and make a motion to approve or deny the application in its second reading.

      i. The applicant shall submit its revised drawings and exhibits showing design changes 14 days prior to the next monthly ARB meeting, or 14 days prior to the subsequent monthly ARB meeting. If the applicant does not plan to submit its changes for either of the two subsequent ARB meetings, they shall notify the City Administrator in writing indicating their desire to either extend postponement for an agreed amount of time or withdraw the application. Withdrawal of an application has important consequences for the applicant, affecting their rights to appeal.

   d. The application may be denied as inappropriate for the Glendale community in the first reading of a motion. It will proceed immediately to a second reading of the motion for a vote of final denial. In this case, as outlined in the Section 535.110 of the municipal code: “In the event that the Architectural Review Board denies an application, no request for a hearing upon the same application or substantially similar application will be accepted for a period of at least one (1) year from date of denial by the Architectural Review Board.”

8. The applicant may appeal decisions by the ARB according to the procedures defined in Sections 535.130 Appeals, and 535.140 Action by the Board of Aldermen, of the municipal code.
9. Having been granted approval by the ARB, the applicant may submit final plans as approved by the ARB to the city administrator and proceed with the building permit approvals process facilitated by the St. Louis County Building Department.

3B – Definitions

The following terms should be well understood by applicants. See also, Section 400.010 Definitions in the Zoning Code for a complete list of terms.

3B-1 Architectural Terms

Accessory Building: A subordinate building or a portion of the main building, the use of which is incidental to that of the main building or to the use of the premises, provided no accessory building may be used for dwelling purposes. Swimming pools are considered under the classification of accessory building.

Accessory Use: A use which is incidental to the main use of a building or land.

Structural Alterations: Any change in the supporting members of a building, such as bearing walls or partitions, columns, beams or girders, or any substantial change in the roof or in the exterior walls.

Balcony: A platform enclosed by a parapet or a railing projecting from a wall or a building.

Basement: A story partly underground but having at least one-half (1/2) of its height below the average level of the adjoining ground. A basement shall be counted as a story for the purposes of height measurement if the vertical distance between the ceiling and the average level of the adjoining ground is more than five (5) feet.

Building, Height of: The vertical distance measured from the Average Grade Elevation of the proposed finished grade (the Grade Plane) to the highest point of the coping of a flat (or low slope) roof, or to the deck line of a mansard roof, or to the height of the highest gable (ridge line) of a pitched or hip roof, as further defined and illustrated in Chapter 5 of the Architectural Review Board Guidelines. This measurement shall include flat (or low slope), mansard, gable, hip and gambrel roofs, and all other architectural features of the building. The ordinary elevation of chimneys and flues may extend above the allowed building height, as regulated by the Building Code.

Coverage, Lot: The percentage of lot area covered by all buildings, structures on the lot (footprint) divided by the lot area. Buildings include any structure or part of a structure covered by a roof including, but not limited to, residences, unenclosed porches, garages, gazebos, sheds, breezeways, carports, etc. An area not to exceed 300 square feet of an unenclosed front porch shall be deducted from the lot area coverage. The area of lot coverage is calculated from the constructed footprint at grade of all buildings.

Floor Area: the horizontal area of a floor of a building measured from the exterior face of exterior walls of building, without deduction for hallways, closets, thickness of walls, columns, or other
features. For purposes of computing floor area for a half story, any portion of the floor area measuring less than five (5) feet from the finished floor to the finished ceiling (such as spaces enclosed in a roof attic) shall not be included in the computation of floor area.

**Floor Area, Adjusted Gross:** The total described by the sum of the horizontal plain of the floors of a building at each story measured to the exterior walls of a building or structure and adjusted as follows:

a. All living space with ceiling heights of sixteen (16) feet or greater shall be counted at two hundred percent (200%).

b. Basements as defined herein, including garages located below the first floor of a single-family home shall not be counted.

c. Unenclosed porches, terraces and steps shall not be counted.

d. Detached Garages shall not be counted. Areas within a detached garage defined as livable space, including a second story or half-story above a detached garage shall be counted.

e. The floor area of all other attached garages, excluding basement garages, shall be counted at fifty percent (50%).

**Floor Area Ratio (FAR):** The total Gross Floor Area of the building or buildings determined by adding the Adjusted Gross Floor Area for each of the stories including second floor areas open to the floor below and 50% of the attached garage, excluding an attached basement garage, divided by the total lot area. Basement areas and unenclosed porches are excluded. Floor area for the first and full second floor shall be measured from the exterior of the building. See Chapter 5 of the Architectural Review Board Guidelines for a more detailed description of FAR calculation and proofs of measure requirements.

**Story, Half:** A space under a sloping roof which has the line of intersection of roof decking and wall face not more than five (5) feet above the top floor level, and in which space not more than two-thirds (⅔) of the floor area is finished off for use. The portion of a "half-story" that could contain living quarters, meaning that which is measured to the line of intersection of roof decking at a point five (5) feet or greater above finished floor elevation of the half story space is counted for the purposes of FAR calculations.

**3B-2 Landscape Terms**

**Caliper:** The measurement of a tree taken at 6-inches above normal existing grade for trees up to 4-inches in caliper or 12-inches above normal existing grade for trees 4-inch caliper to 12-inch caliper trees. Typically used to describe the size of nursery stock or recently planted trees. For trees larger than 12-inch caliper, refer to Diameter at Breast Height method of measurement.

**Critical root zone (CRZ):** means the zone under the canopy and around the trunk of a tree that contains the tree's root structure and the space above ground within the tree's canopy drip line.
or beyond. The CRZ can be observed on site and is also estimated to be 1.25 feet for every one inch of tree diameter breast height or caliper. The observed or calculated CRZ that is larger will take precedence.

**Diameter at Breast Height (DBH):** The diameter of a tree trunk at 4.5 feet above ground for trees over 12 caliper inches. For species of trees whose normal growth pattern is characterized by multiple stems the diameter at breast height of each stem shall be measured and the average of all measurements shall constitute the diameter of the tree.

**Heritage Tree:** A tree which has been identified on the City’s official list of approved trees with a Diameter Breast Height (DBH) of 24 inches or more.

**Protection plan (TPP):** means drawings that graphically illustrate the existing trees on the project site, adjacent to the site and in the right-of-way. The TPP will include graphic depictions of the tree protection zones (TPZ)/tree protection fence, critical root zone (CRZ), and locations of tree protection measures (such as root pruning, aeration, etc.) to protect trees during construction or other site disruptions. A written description of tree protection measures must also be included in the drawing. Required elements of the TPP can be included on the landscape plan or submitted as a separate plan.

**Tree protection zone (TPZ):** means the zone around the tree that will be maintained at the original grade and original conditions over the course of the development. This zone is determined by the critical root zone (CRZ) location and must be no less than a five-foot radius from the trunk per caliper inch or DBH. Tree protection fence must be placed at the perimeter of the TPZ.
Section 4 – Defining Context

Every application submitted to the ARB will be reviewed within the context of the neighborhood within which it is located. Understanding how a neighborhood is identified, recognizing its patterns of planning and design, and working within these patterns are keys to neighborhood conservation and the preservation of the high quality of our community.

4A - Understanding the Neighborhood

A neighborhood is a place with a particular character and boundary. It is given presence by the specific characteristics of streets, trees, sidewalks, driveways, front yards, house set-backs, massing, scale, and street configurations. From place to place in Glendale, there is rich diversity in these neighborhood qualities.

A neighborhood may not be definable by boundaries on a map. However, by examining the Glendale map, patterns of land use, organization, lot size, and lot geometry offers some clues about the extents of neighborhood qualities that define our community. Concentrations of narrow lots on orderly rectangular street grids can be observed in the neighborhoods West and East of Sappington Road. The 50-foot-wide lot dominates the street scale of these blocks of homes, and has important implications on land use, arrangement of driveways, neighborhood parking patterns, the preservation of front yard space, etc. Larger and more varied lot sizes and less rigid street grid characterizes the neighborhoods East and West of Berry Road. These areas are less constrained by the scale of the 50-foot-wide lot, and feature homes with more widely varied solutions to house organization, driveways and parking, and the extents of front yards as they contribute to the qualities of the Street. Several neighborhoods are anchored by prominent institutions that command an identity by association, such as the Lutheran and Methodist churches and North Glendale Elementary School on Sappington Road, and the churches anchoring the Southeast corner of Glendale at Berry Road and Lockwood Avenue. These large buildings interrupt the suburban scale of street spaces and offer public access to outdoor spaces that enhance and enrich Glendale neighborhoods. The commercial and civic character of Sappington Road, a main connector street, is unmistakable, hosting City Hall, the Police and Fire Departments, churches, a school, and retail businesses. By contrast, Berry Road has a different and more domestic character, even though it is a major connector like Sappington Road, offering the community its main access to Interstate 44. The northern edge of Glendale supports commercial development fronting Manchester Road, a busy arterial commercial street linking many communities from east to west. The Southern edge is defined by West Lockwood Avenue and primarily features golf course frontage and a community center with a park, offering a recreation and biking lane. Meanwhile, the organic irregularity of Shady Grove Creek winds through Glendale’s mid-section creating a natural corridor supporting wildlife and creating many irregular and unique home environments that are almost rural in character.

Despite these understandable patterns of municipal organization, the qualities that are most useful for understanding neighborhood conservation are probably best understood on a smaller scale by the immediate surroundings of the block and the street. This is the scale at which a
typical resident might best understand their specific neighborhood – the walkable scale at which a resident might know or be familiar with their neighbors or the drivable scale at which they would travel to and from their home to the main arterial streets serving the community. Neighborhood identity is perceivable at this scale in the patterns that are common and shared by most houses on the block. These include similarities in size, scale, and height of the houses; complexity of form; the height of entrances in relation to the street; the distance that houses are setback from the street; the organization of sidewalks, driveways, and parking with respect to streets and front yards; the massing and arrangement of trees and plantings; and the predominant materials used to make houses, drives, and walks.

Designing for neighborhood compatibility requires the design professional to visit the applicant’s site and take a close look at what is already there. A compatible design will complement the neighborhood patterns found. It requires a desire to understand the neighborhood and prioritize its existing qualities over novelty or preconceived design solutions.

4B – Understanding the Block

The extents of the block that a property exists within may take careful observation. A block may be defined by the nearest corners in each direction up the street. It should also include houses located behind the property, as they will be affected by a project as surely as the neighbors on the street. Carefully assess the area of influence around the proposed residence. This includes the physical boundaries that are visible from the residence, and from the yards of the property. It should also include the vehicle and pedestrian traffic ways that approach and support the property.
A block may be defined by the extent of residential space. Adjacency to institutional and commercial property uses may extend or limit the identification of block boundaries, depending upon the organization of buildings masses and open space. Where the area of influence of a residence approaches a commercial or institutional property, it will likely be limited by features such as a large building mass, an organized car parking lot, etc. However, open public space, recreation areas, or park landscaping may extend the zone of influence of a residence in unanticipated ways.
Blocks will typically host groupings of houses that share similar characteristics, often indicating that the homes were built during an original period when the neighborhood was first established. These “Example Houses” represent positive neighborhood character that the ARB is charged with preserving and enhancing in the new projects that it approves. Applicants and their design professionals should identify and understand Example Houses in the neighborhood in order to generate a successful, approvable design that complements the neighborhood rather than ignoring it. The members of the ARB must take into account the patterns of Example Houses in order to perform a meaningful review and ensure a new home fits well in its block and neighborhood.

Example Houses present patterns in the following design features:

- Scale (comparative size and relationships).
- Height and size of the houses.
- Composition of form, shapes and slopes of roofs and dormers, and complexity of façade planes.
- Use and composition of materials.
- Street setback, side yard size and massing relationship to neighboring houses.
- Arrangement of entries and porches.
- Location (or lack of) of sidewalks, how pedestrians move through the neighborhood.
- Arrangement and size of driveways, the location of garage parking, open parking on site, and street parking.
Specific homes may vary from the prevailing patterns in a neighborhood. They may stand out because they are more massive, less respectful of neighboring homes, or are organized on their site with a divergent pattern of functions or vehicle parking. Sometimes, there are sound or even unavoidable reasons for exceptions to established design patterns. Such variants, having occurred out of specific circumstances in time, should not then become the basis of design for projects that seek to preserve the characteristics of a neighborhood. It is important not to consider “mistakes” from the past as “important” precedents defining the quality of a neighborhood. Many incompatible projects have been built already – which is why the ARB design review process was created. The ARB will evaluate applications accordingly in the light of its given mission to preserve the neighborhood quality and character of Glendale.

Characteristics of Block Patterns – Look for the following characteristics to identify Block Patterns:

- The extent of consistent neighborhood fabric based on the original period of the houses and Example Houses which define its character.
- The location and styles of Example Houses.
- The location and style of houses that are obviously inconsistent with Example House patterns.
• The extent to which new houses and additions are either consistent with or divergent from the patterns of Example Houses on the Block.

• The general location of houses with respect to the street and setbacks, and how they meet the street with porches, stoops, sidewalks, landscaping.

• The general height, mass, and form composition of houses.

• Special circumstances in neighboring properties, such as proximity to businesses, schools, churches, civic buildings. Driveway, parking, and garage patterns.

4C – Understanding the Street

A street is a community of rooms. The rooms are the front yards of the houses that are organized along the street. The walls of these “rooms” are primarily the facades of the houses, though fences, hedges, and garden beds are also often prominent markers. These “rooms” are public space, though their use may be semi-public depending upon how a resident manages their property. They support neighborly relationships, play, access to houses, beautiful gardens, and constitute one of the most important and prevalent outdoor assets of the community. The street itself, along with its sidewalks and trees, defines, and supports movement through this public space of the neighborhood. A good design proposal should strengthen the harmony and structure of the Street. While a specific house design does not have to look like everything else on the street, the design of the house and the site should reinforce and complement the existing streetscape.
The Glendale Municipal Code sets minimum requirements for the setback dimension of the main façade of the house from the street property line. However, there is often a more important setback to respect— the one that is created by the existing Example Houses on the street. A good design always respects the predominant setback pattern that has been established by existing houses. Similarly, side yards have a minimum dimension in the code, but the street pattern will indicate what size side yards may be appropriate and feel best to residents. Preserving the side yard pattern can help maintain neighborly relationships and avoid crowding adjacent homes with a new design.

The perceived height of houses is created not only by the number of stories and dimensioned height of roofs and facades, but other factors as well. The elevation of the first-floor entry into the house will have a prominent effect on how well a house fits into the streetscape. Designs should propose a compatible first floor elevation that fits into the contours of the street topography and avoids creating a dominant situation with respect to neighboring houses.
Characteristics of Street Patterns – Look for the following characteristics to identify Street Patterns:

- The shape of the street and the extent of the street visible from the applicant’s residence.
- Driveway, parking, and garage location patterns.
- The setback of houses from the street.
- The relative elevations of entry level with respect to topography and the elevation of the street at the curb.
- The arrangement of sidewalks, entry walks, porches, stoops, and front doors.
- The massing of house facades into single or multiple planes, and the presence or absence of secondary forms such as porches, roof dormers, entry steps, projected bay windows, etc.
- The pattern, form, and relative elevations of roofs from house to house along the street.
- The rhythm, placement, and species of street trees and front yard trees, the presence of Heritage Trees.
- The arrangement of gardens and plant beds.
- The types, sizes, and materials of fencing and retaining walls, although fences are also regulated by the Municipal Code.
4D – Neighboring Properties

Every applicant should submit a design that respects neighboring properties. The design of a new house or addition should make an effort to transition its forms to the scale and form of the adjacent homes and avoid dominating or overshadowing the neighbors. Take notice of the compositional elements of the houses on the street and work to create relationships between the new structure and the existing houses. Don’t tower over neighboring properties. Don’t block the sun out of your neighbor’s home.
Consider the following characteristics of neighboring houses and design in response to them to be a good neighbor:

- Note how front yards and driveways are organized and where garages are typically located. Where are vehicles parked? How are houses typically approached by cars and pedestrians? Notice and reinforce these patterns.

- What is the pattern of street trees and front yard trees in neighboring yards?

- How neighboring houses are massed should be considered in the composition of a new house or addition. Is their composition horizontal or vertical in the expression of form? Are single main forms typical, or is there complexity in massing? Typical Glendale houses are not usually cubic boxes with a single roof form, and neither should your design propose such simplistic solutions.

- Notice the scale and architecture of front entries – consider ways to reinforce the patterns evident in entries along the street. Porches may be projected as forms or recessed into the main form of the house. Whatever the solution, ensure that the scale of the entrance is compatible with the neighbors on the street.

- Notice characteristic roof forms. Are roof eaves level or do they follow gabled roof ends? What secondary roof forms are common, and how many roof masses are typical in other houses on the street?

- Consider the size and proportions of windows and the style of trim around openings. These elements should be designed to relate to neighboring homes, which is a matter of both style and the degree of openness projected by the design and relative to the street.

- Observe the façade materials that are common in neighboring houses and take note of composition and transitions in materials.

- Are there special or unique features repeating in neighboring homes that may be adapted or applied to the design being proposed?
Neighborly Examples – Diversity with a Pattern

4E – Identifying Style

Glendale neighborhoods host a wide variety of architectural styles. Therefore, style in design is less of a defining factor for neighborhood identity. Nevertheless, style should not be totally ignored when designing a new home if it is to preserve the quality of a neighborhood. A divergent or unique expression of architectural style may feature other qualities that help it fit in with neighboring properties, such as sensitivity to scale, similarity of massing, appropriate selection of materials, etc.

It is not necessary to design a new house in the same style as its neighboring properties. It is necessary to create harmony in the juxtaposition of homes reflecting differing taste and style. Take a drive around Glendale neighborhoods and notice the wide variety of styles ranging from traditional to contemporary, colonial to modern, craftsman to clapboard.
Exemplary and varied house designs within the City of Glendale
Section 5 – Defining Scale

Every application submitted to the ARB must comply with measurable limitations to its Scale. The size of new and renovated homes is a major concern of Glendale residents. No homeowner wants their home to be dominated or overshadowed by a neighboring property. Understanding how the ARB measures the size of your project and its conformity to the community’s measured limits is important to the success of your application.

5A.1 – Setbacks, Front Yard, Side Yards, Rear Yard

Setbacks for front, side and rear yards are defined in detail in the municipal Zoning Code. Setbacks vary for projects located in R1 and R2 designated Zones. Use the following link to access Chapter 400 of the Code, and review the relevant Sections:

https://ecode360.com/29353932

The following Table summarizes the required setbacks and minimum Lot Size limits.

<table>
<thead>
<tr>
<th>Setback</th>
<th>R1 – Single Family</th>
<th>R2 – Single Family</th>
<th>R3 – Multifamily / Condominium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front Yard</td>
<td>35 feet</td>
<td>30 feet</td>
<td>30 feet to Right of Way</td>
</tr>
<tr>
<td>Side Yards</td>
<td>10 feet</td>
<td>7 feet</td>
<td>10 foot out-boundary abutting R1/R2</td>
</tr>
<tr>
<td>Rear Yards</td>
<td>30 feet</td>
<td>30 feet</td>
<td>10 foot out-boundary abutting R1/R2</td>
</tr>
<tr>
<td><strong>Lot Limits</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum Lot Area</td>
<td>&gt;= 10,000 sq. ft.</td>
<td>&gt;= 7,500 sq. ft.</td>
<td>3,250 sq. ft. ground area per dwelling unit</td>
</tr>
<tr>
<td>Minimum Lot Width</td>
<td>80 feet</td>
<td>65 feet</td>
<td>200-foot common property line with an existing R3, C1, C2, or C3 zoned District</td>
</tr>
<tr>
<td>Corner Lot Minimum Width</td>
<td>95 feet, but buildable width 50 feet minimum</td>
<td>80 feet; but buildable width 40 feet minimum</td>
<td></td>
</tr>
<tr>
<td>Lots of Record</td>
<td>R1 – Single Family</td>
<td>R2 – Single Family</td>
<td>R3 – Multifamily / Condominium</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>--------------------</td>
<td>--------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td><strong>Interior Lot Front Yard</strong></td>
<td>Average of front building line of adjoining properties</td>
<td>Average of front building line of adjoining properties</td>
<td></td>
</tr>
<tr>
<td><strong>Corner Lot Front Yard</strong></td>
<td>35 feet</td>
<td>30 feet</td>
<td></td>
</tr>
<tr>
<td><strong>Corner Lot Side Street Front Yard</strong></td>
<td>25% of Front lot-line width; but 12 feet minimum *</td>
<td>25% of Front lot-line width; but 12 feet minimum *</td>
<td></td>
</tr>
<tr>
<td><strong>Side Yard</strong></td>
<td>10% of lot width (min 6 feet max 10 feet)</td>
<td>6 feet for lots less than 65 feet in width; 7 feet for lots 65 feet in width or greater</td>
<td></td>
</tr>
<tr>
<td><strong>Double Frontage Lots</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Front Yard</strong></td>
<td>Both frontages 35 feet</td>
<td>Both frontages 30 feet</td>
<td>Both frontages 30 feet to Right of Way</td>
</tr>
<tr>
<td><strong>Side + Rear Yards</strong></td>
<td>As for Single Frontages</td>
<td>As for Single Frontages</td>
<td>As for Single Frontages</td>
</tr>
</tbody>
</table>

* = If building lines are delineated on the side street of a subdivision plat of record, such lines shall be the prevailing and required building lines.
5A.2 Context Setback – Front Yard

As described in Section 4, there is often a front yard setback defined by the existing location of Example Houses with respect to the Street. This is defined as the “Context Setback” in these Guidelines. Where the predominant setback of existing Example Houses creates a Context Setback that either exceeds or is less than the required setback in the Zoning Code, the ARB will enforce the Context Setback in the front yard of the applicant’s project.
5B – Lot Coverage Limit

No more than 55% of the total lot may be covered by impervious material. No more than 45% of the required Front Yard Setback may be covered by impervious material.

5C – Floor Area Ratio

Density of development on a property is measured by calculating the Floor Area Ratio (FAR) for a proposed design. FAR is defined in the Zoning Code as follows: “The total Gross Floor Area of the building or buildings determined by adding the Adjusted Gross Floor Area for each of the stories including second floor areas open to the floor below and 50% of the attached garage, excluding an attached basement garage, divided by the total lot area. Basement areas and unenclosed porches are excluded. Floor area for the first and full second floor shall be measured from the exterior of the building. See Chapter 5 of the Architectural Review Board Guidelines for a more detailed description of FAR calculation and proofs of measure requirements.” The permissible FAR will vary with the Zoning designation and the lot area.

Floor Area is defined in the Zoning Code as follows: “The horizontal area of a floor of a building measured from the exterior face of exterior walls of building, without deduction for hallways, closets, thickness of walls, columns, or other features. For purposes of computing floor area for a half story, any portion of the floor area measuring less than five (5) feet from the finished floor to the finished ceiling (such as spaces enclosed in a roof attic) shall not be included in the computation of floor area.”

Adjusted Gross Floor Area is defined in the Zoning Code as follows: “The total described by the sum of the horizontal plain of the floors of a building at each floor measured to the exterior walls of a building or structure and adjusted as follows:

a. All living space with ceiling heights of sixteen (16) feet or greater shall be counted at two hundred percent (200%).
b. Basements as defined herein, including garages located below the first floor of a single-family home shall not be counted.
c. Unenclosed porches, terraces and steps shall not be counted.
d. Detached Garages shall not be counted with the exception of areas defined as livable space.
e. The floor area of all other attached garages, excluding basement garages, shall be counted at fifty percent (50%).

Floor area shall be measured and reported in units of square feet (sq. ft.)

The following Floor Area Ratio limits are established for all lots of zoned R-1 or R-2, except when an applicant can demonstrate that the subject property presents unique circumstances, and the applicant has taken extraordinary design measures to ensure neighborhood compatibility:
A. For lots measuring 8,000 sq. ft. to 10,000 sq. ft., the maximum FAR shall be 0.30.

B. For lots measuring 10,000 sq. ft., but less than 20,000 sq. ft., the maximum FAR shall be 0.30.

C. For lots measuring 20,000 sq. ft. or greater, the maximum FAR shall be 0.30.

D. Small lots measuring approximately 50 feet wide by 150 feet deep, having a Lot Area of approximately 7,500 sq. ft. or less present a particular problem of Scale in the Glendale community. There are many Neighborhoods in Glendale where this small lot size predominates. These lots are typically occupied by Example Houses that are smaller, single-story homes which are easily and uncomfortably dwarfed by the typical size of a new, two-story home. However, conformity to a single more restrictive maximum FAR might dictate a development density that is not necessarily economically feasible. To that end, these lots will have a smaller FAR that may be increased if certain design incentives are satisfied.

   1. For lots measuring less than 8,000 sq. ft. the maximum FAR shall be 0.25, or 25%.

   2. The following increases may be added to meet the incentivized design conditions described below. A maximum increase of 5% shall be permitted.

      i. Providing a detached garage is incentivized in the FAR by allowing the area of a detached garage to be excluded from the calculation of Floor Area. No other increase will be allowed for providing a detached garage.

      ii. Provide a low impact attached, front entry garage, in which the attached garage is set back from the front façade of the house at least 75% of the depth of the house living space (not including any projected front porch): add 1 percent.

      iii. Preservation of a Heritage Tree on the site or in the city right of way: add 1 percent.

      iv. Provide a stepped back design for second story space, or mass second story space into a roof attic and/or roof dormers. Second Story setbacks shall be a minimum of five feet from the first story façade. Such designs shall limit the eave height of the proposed roof at side yards to 1.5 times the eave height of a neighboring one-story house: add 1 percent. See Section 5D-4 for illustration.

      v. Limit driveway width to 10 feet within the front yard setback: add 1 percent.

      vi. Exceed the minimum side yard set back by three feet: add 1 percent.
vii. Use of brick or stone masonry cladding for 75% or greater of the material for all building facades: add 1%.

5D-1 – Building Height Limits

The massing and height of a building form both directly affect how its Scale is perceived within the neighborhood. The Zoning Code sets a performative limit of 35 feet / 2-1/2 stories on building heights within the community for all Residential and Commercial Zoning Districts, excepting specific public buildings that are described in Section 400.070 of the Code.

5D-2 - Eave Height Limit:

The eave height (also known as the roof plate height) shall not exceed 25 feet in height from average grade elevation. The design guidelines recognize that there is a difference between overall building height, as measured at the highest roof ridge line, and the façade and roof eave heights that are the main scale elements in a house design. What does the defined height limit translate into in the design of houses? A typical story height might measure 8 to 10 feet. 2-1/2 stories would result in a roof plate / eave height of 20 feet to 25 feet, with the balance of the allowable 35-foot height available to work out roof pitches above the eave line.

5D-3 – Neighbor Adjacency Considerations

Managing the massing of facades and roofs is critical to creating a design that fits into the neighborhood. Section 4D presented above describes scale and form characteristics that result in good neighborhood design. The location of gable-end roofs must be carefully considered in the massing of a project as it relates to neighboring properties on either side.

Managing Stones and Roofs Eaves
Controlling the height of roof eaves can help harmonize a two-story design with one story neighboring properties.
**5D-4 – Average Grade Elevation**

Measuring roof height accurately and fairly requires determination of the Average Grade Elevation (AGE). This is defined in the Zoning Code as the Grade Plane. (Section 400.010)

Referring to the diagram below, Average Grade Elevation is calculated by recording the grade elevation at points 6 feet away from the building using the building corners and the midpoints of the side yard facades for reference. Then use the following formula to calculate the Grade Plane from which building height will be measured:

\[ \text{AGE} = \frac{(A1+A2+A3+A4+A5+A6)}{6} = \text{Grade Plane} \]
5D-5 – Measuring Building Height

The Building Height is defined as the dimension between the Grade Plane (calculated by finding the Average Grade Elevation) and highest point of the coping of a flat roof or to the deck line of a mansard roof, or to the height of the highest gable (ridge line) of a pitched or hip roof. (Section 400.010). The following diagram illustrates measurements of Building Height.
5E – Proofs of Measure

The design professional will illustrate the measurement of limits for the applicant’s project on the drawings submitted for approval. These will include the following at a minimum:

i. Dimensioning of all setbacks, including a Context Setback where applicable, on an appropriate Site Plan Drawing.

ii. Illustration of the Floor Area calculation on Floor Plans or provision of plan diagrams illustrating the area measurements. Where areas are taken from a digital CADD plan, show the boundaries of measurement areas and label the area stated by the software.

<table>
<thead>
<tr>
<th>FLOOR AREA RATIO:</th>
<th>Lower Level Finished</th>
<th>Lower Level Unfinished</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lot Area</td>
<td>12,300 sq ft</td>
<td></td>
</tr>
<tr>
<td>House First Floor</td>
<td>1419.1 sq ft</td>
<td></td>
</tr>
<tr>
<td>House Second Floor</td>
<td>1480.8 sq ft</td>
<td></td>
</tr>
<tr>
<td>House Total</td>
<td>2899.9 sq ft</td>
<td></td>
</tr>
<tr>
<td>Attached Garage (50%)</td>
<td>398 sq ft</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Garage</th>
<th>Front Porch</th>
<th>House Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower Level</td>
<td>859.6 sq ft</td>
<td>409.4 sq ft</td>
<td>34'-4½&quot;</td>
</tr>
</tbody>
</table>

Total Floor Area 3297.9 sq ft
Floor area Ratio 26.6%

Maximum FAR is 30% or 3500 sq ft which ever is greater

30% of 12,300 sq ft is 3690 sq ft

iii. For determination of the grade plane, label the six required grade points on an appropriate site plan or site diagram, and show the calculation by formula on the drawings.
iv. **Building Height** shall be dimensioned on Building Elevations and/or Sections. The Grade Plane shall be shown graphically on the drawings, as well as the grade line at the building façade which shall be accurate and coordinated with civil engineering grading plans. The roof height elevation at the highest ridgeline, or highest coping or mansard roof deck line elevation shall be shown graphically and dimensioned from the Grade Plane accordingly.

v. The scale of the proposed building as viewed from the street will be illustrated in comparison to the immediate neighboring structures located on each side of the subject property. This may be done diagrammatically or by using a photographic composite with the proposed Street elevation of the project design. The exhibit will show the vertical relationship of the façade and eave heights of the proposed design to those of its immediate neighboring properties.
Section 6 - Site Design Guidelines

This section provides qualitative design guidelines, not to simply present a checklist, which is provided in Section 9. Site plans shall show the following characteristics of the proposed design.

6A. Project Site Characteristics

No two sites are exactly the same. Good design will take advantage of existing topography and fit a new home into the contour of the existing site. Planning the elements of the site should be thought through in three dimensions, respecting topographical features and limits, and avoiding the enforcement of a preconceived two-dimensional plan. The design will always need to meet the existing conditions of the land on the property lines and the street, since little can be done to change these conditions off-site.

The following features must be addressed by a thorough site design:

- Existing topography is integrated into grading design.
- Locating the top of the foundation and the entry floor in relation to adjacent neighboring properties.
- Avoiding “Mounding” of the site – building up too high from the street to the entry level.
- Control stormwater flow and discharge from the site.
- Resolve existing and proposed grades in a complete contour plan.
- Slopes are maintainable, retaining walls are not massive.
- Downspouts for roof drainage are designed and directed.
• Neighboring property lines are respected, not encroached upon.
• Landscaping and trees minimize erosion.

Utility planning is an important aspect of site design. An applicant must have an accurate survey of utilities that service the property, and the plan for development must take the lay of existing utilities into account. Landscape design and the location and eventual scale of plants and trees must be accounted for in the planning of a site, so that grading, utilities, and the landscape do not pose conflicts that will prevent a successful result.

Plan the “room” of the street to recognize and establish the natural boundaries of public, semi-public, and private space that progress from the street to the house.

6B. Aerial Photo Plan:
Submit an illustration compositing the proposed development with buildings shaded black and pavements shaded grey, superimposed to scale onto an aerial photo image (such as may be obtained from Google Maps or Google Earth) showing the project Street in its entirety, from end to end. This exhibit will allow the applicant and ARB to see and understand the density, parking patterns, and building adjacency patterns of the project context.

6C. Building Location
The location of all buildings and structures must be clearly documented on Site Plan Drawings

A. Illustration of yard setbacks and relationship of building to set back lines.
B. All buildings and structures shall be dimensioned to property lines / corners.
C. Illustration of yards and buildings, to include complete plan of adjacent neighbor sites. Neighboring sites do not need to be surveyed but may be drawn based on county property record illustrations and field measuring of the adjacent property facades as they face the subject property.
6D. Grading Design

A complete grading plan is required with 1ft contours, with structure drainage discharge points, and surface drainage patterns illustrated, at the appropriate scale of 1”=10’. This drawing shall not be submitted in a half size or reduced scale exhibit. Grading design shall achieve the following:

A. Design new contours to connect to existing contours at the property lines. Do not propose off-site grading solutions. Provide retaining walls as needed to meet existing grades at the property boundaries. Indicate top and bottom elevations of all retaining walls. However, extensive reliance upon retaining walls may indicate a flawed design concept.

B. Avoid excessive overland discharge of storm water onto neighboring properties.

C. Direct drainage from structures and impervious pavements to swales, area drains served by drain piping, curbed or swaled pavements discharging to streets, or storm water detention areas to prevent concentrated roof downspout storm water flow from discharging across neighboring properties.

D. Set the finished floor elevation of the first floor / entrance story to avoid “mounding” up to the ground level floor. The entry floor should be at a mediating elevation between the neighboring houses on either side.

E. Grade maintainable slopes. Do not exceed slope of 1 foot vertical in 3 feet horizontal.

F. Do not raise or lower the grade within the critical root zone of trees that are designated to remain.

6E. Pervious and Impervious Surfaces

Site plan drawings shall document the pervious and impervious areas of the site and shall provide a table showing the calculation of impervious ratio and Lot Coverage as described by Section 5.
Table Example:

<table>
<thead>
<tr>
<th>IMPERVIOUS LOT COVERAGE CALCULATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td><strong>AREA (SF)</strong></td>
</tr>
<tr>
<td>TOTAL LOT SIZE</td>
</tr>
<tr>
<td>FRONT YARD AREA</td>
</tr>
<tr>
<td>IMPERVIOUS AREA</td>
</tr>
<tr>
<td>EXISTING</td>
</tr>
<tr>
<td>PROPOSED</td>
</tr>
<tr>
<td>CHANGE</td>
</tr>
<tr>
<td>FRONT YARD SETBACK</td>
</tr>
<tr>
<td>PROPOSED FRONT YARD SETBACK IMPERVIOUS AREA</td>
</tr>
<tr>
<td>GREENSPACE AREA</td>
</tr>
</tbody>
</table>

6F. Site Utility Servicing

Site plan drawings shall document the location of all underground storm water piping, site utilities, utility service entrances, and mechanical equipment. The direction of overland storm water flow will be indicated on the drawings using arrows, shading, or other notation to clarify the flow direction resulting from the grading design. The following may be presented as separate drawings, or as a combined drawing provided that all information is legible.

A. Drainage utility drawing, showing grading contours, structure drainage downspouts, underground storm utility piping, over-land storm drainage patterns and flow, storm water detention structures, municipal storm water structures on or in immediate proximity to the site and that are intended to accept storm water flow from the proposed project, storm water calculations, and the ARB’s specified and preferred expression of water volumes, differential discharge, etc (defined below).

B. Utility drawing showing all underground utilities such as: power, sanitary sewer, storm sewer, natural gas, and telecom service entrances; site located equipment such as air conditioning compressors; municipal lighting equipment or telecom/data service station points; overhead power service; easements and rights of way, an indication of major existing and proposed trees.
C. Pop up emitters shall be located so that storm water released will have some pervious yard space within which to dissipate. Location limits are as follows:

1. Minimum of 10 feet from public sidewalks and streets.

2. Minimum of 10 feet from a neighbor’s property line, but as far interior to the site as practical; always maximize the distance over which storm water discharge may dissipate and be absorbed by overland drainage.

3. Do not discharge a pop-up emitter to flow over a sidewalk surface. Extend drain piping below sidewalk and discharge on grade down-slope from the walk surface.

6G. Storm Water Mitigation

Every project design will need to address storm water mitigation. Projects can be categorized into two groups:

**Group 1: Building Additions**

Any project where the existing residence is substantially remaining, and new building additions are to be constructed, that creates an increase in the storm water differential as compared to the existing conditions of the site, shall provide storm water mitigation that is capable of holding and delaying the runoff of the differential storm water volume.

**Group 2: New Building Construction**

Any project where a new residence will be constructed on an undeveloped property or on a property where an existing building is to be removed, the entirety of the storm water from the roof area of the new building and the roof area of the new detached garage (if applicable) will need to be captured and storm water mitigation shall be provided.

Mitigation measures may include the following design features: (The following list is an example of what would be considered. The applicant may deviate from this list with other storm water mitigation devices, so long as they meet the prescribed storm water volume holding and storm water delaying requirements.)

A. Infiltration pit. An infiltration pit is a below grade device that captures and holds the required storm water volume, and then allows this storm water to soak into the surrounding soils. This type of pit’s stormwater volume can be either be filled with rock (modeled at 40% voids) or with air (similar to the NDS Flo-Well). This can be a pit, trench or basin as illustrated below.
B. Bio-detention basin. A Bio-detention basin is an above ground basin that captures and holds the required storm water volume in an above grade pond and then allows storm water to be released slowly over a prescribed period of time. This type of pit’s stormwater volume is modeled in the basins above grade area. The slow release of the stormwater is controlled by a low flow pipe that is designed to release...
storm water at a rate no greater than the modeled storm water area as grass. The basin must contain native plantings complying with publication MSD Landscape Guide for Stormwater Best Management Practice Design, Rev. 2, May 2012, or any more recent versions.

Maintenance of Storm water Mitigation Infrastructure

It is the responsibility of the property owner to keep all storm water mitigation infrastructure in good working order, and repair and maintain such stormwater management infrastructure constructed as part of the plan approval, for as long as the property owner owns the property.

Group 1: Building Addition Storm Water Mitigation Calculations

DIFFERENTIAL STORM WATER RUNOFF CALCULATIONS (15 YEAR, 20-MINUTE STORM)

CAPTURE AREAS FOR THE ENTIRE PROPERTY. TOTALS MUST EQUAL PROPERTY TOTAL AREA AS RECORDED ON THE SURVEY, SHOWN ON ST. LOUIS COUNTY RECORDS, AND AS DOCUMENTED IN PERVIOUS AREA CALCULATION TABLE.

<table>
<thead>
<tr>
<th>EXISTING</th>
<th>AREA (SF)</th>
<th>ACRES</th>
<th>P.I.</th>
<th>FLOW (CFS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROOF</td>
<td>X,XXX</td>
<td>X.XX</td>
<td>4.20</td>
<td>X.XXX</td>
</tr>
<tr>
<td>PAVEMENT</td>
<td>X,XXX</td>
<td>X.XX</td>
<td>3.54</td>
<td>X.XXX</td>
</tr>
<tr>
<td>PERVIOUS / GREEN</td>
<td>X,XXX</td>
<td>X.XX</td>
<td>1.70</td>
<td>X.XXX</td>
</tr>
<tr>
<td>TOTALS</td>
<td>X,XXX</td>
<td>X.XX</td>
<td>N.A.</td>
<td>X.XXX</td>
</tr>
<tr>
<td>PROPOSED</td>
<td>AREA (SF)</td>
<td>ACRES</td>
<td>P.I.</td>
<td>FLOW (CFS)</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------</td>
<td>-------</td>
<td>------</td>
<td>------------</td>
</tr>
<tr>
<td>ROOF</td>
<td>X,XXX</td>
<td>X.XX</td>
<td>4.20</td>
<td>X.XXX</td>
</tr>
<tr>
<td>PAVEMENT</td>
<td>X,XXX</td>
<td>X.XX</td>
<td>3.54</td>
<td>X.XXX</td>
</tr>
<tr>
<td>PERVIOUS / GREEN</td>
<td>X,XXX</td>
<td>X.XX</td>
<td>1.70</td>
<td>X.XXX</td>
</tr>
<tr>
<td><strong>TOTALS</strong></td>
<td>X,XXX</td>
<td>X.XX</td>
<td>N.A.</td>
<td>X.XXX</td>
</tr>
</tbody>
</table>

DIFFERENTIAL RUNOFF (TOTAL CHANGE IN FLOW (CFS) FOR ENTIRE PROPERTY)

PROPOSED CFS  -  EXISTING CFS  =  X.XXX CFS

STATEMENT – UNDERLINE ONE AND INDICATE RUNOFF AMOUNT:

THIS PROJECT HAS AN INCREASE / DECREASE IN STORM WATER AMOUNT OF X.XXX CFS

---

**Group 2: New Building Construction Storm Water Mitigation Calculations**

STORM WATER RUNOFF CALCULATIONS (15 YEAR, 20-MINUTE STORM)

CAPTURE AREAS FOR BOTH BUILDING AND GARAGE.

<table>
<thead>
<tr>
<th>PROPOSED</th>
<th>AREA (SF)</th>
<th>ACRES</th>
<th>P.I.</th>
<th>FLOW (CFS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROOF (BUILDING)</td>
<td>X,XXX</td>
<td>X.XX</td>
<td>4.20</td>
<td>X.XXX</td>
</tr>
<tr>
<td>ROOF (GARAGE)</td>
<td>X,XXX</td>
<td>X.XX</td>
<td>4.20</td>
<td>X.XXX</td>
</tr>
<tr>
<td><strong>TOTALS</strong></td>
<td>X,XXX</td>
<td>X.XX</td>
<td>N.A.</td>
<td>X.XXX</td>
</tr>
</tbody>
</table>
Conversion of Storm Water FLOW in CFS (Cubic Feet Per Second) to Volume in CF (Cubic Feet)

\[ \text{X.XX CFS} \times 60 \times 20 = \text{X.XX CF} \]

This is the volume that will need to be stored.

The stormwater calculations shall be provided by a Professional Engineer licensed to practice in the State of Missouri.
Section 7 – Landscape Design Requirements

7A- Guideline Objectives

The guidelines in this section provide applicants with a detailed basis for the ARB’s evaluation of landscape design. It is intended that all projects satisfy the following objectives, which the Guidelines support.

1. Protect and enhance the visual appeal of the City of Glendale.
2. Contribute to high-quality site development.
3. Conserve water resources by using sustainable design techniques.
4. Promote plant species that are low water-use and regionally appropriate.
5. Improve water quality.
6. Improve air quality through the preservation and protection of mature tree canopy coverage.

7B- Tree Protection, Preservation & Replacement

This section sets forth preservation measures to protect against the unnecessary removal of existing canopy coverage. When tree removal is deemed necessary, this section will also provide a set of guidelines for proposed tree plantings to promote a healthy succession plan for future tree canopy coverage.

1. Tree Protection Requirements
   a. Contractor shall stake clearing limits to coordinate the locations for tree protection measures and tree protection fencing installation.
   b. Contractor shall build and maintain temporary fences of brightly colored plastic tree protection fencing and signage so that construction workers can clearly see zones from where equipment must be kept clear. Signage will indicate "DO NOT ENTER," "DO NOT REMOVE," or other messages that communicate the importance of tree protection fencing. Tree protection fence must be maintained at all times. It cannot be removed at any time during the construction. Upon completion of construction, all barriers, fencing, and debris shall be removed from the site by the contractor.
   c. No clearing or grading shall begin in any area of construction site where tree preservation measures have not been completed.
   d. No construction equipment can be operated within tree protection zone (TPZ) of the trees that are to be protected. Access to fenced preservation areas by construction equipment, materials, or individuals that may cause harm to protected trees is prohibited.
e. Boring or tunneling methods, including hand trenching, shall be used, to the extent reasonably practicable, when utilities are to be located in the critical root zone, since many critical roots are close to the surface.

f. Contractor will be prohibited from cutting into tree's roots, compacting the soil over roots, or changing the ground level around the tree during construction. Root pruning, a tree protection measure, must be completed by qualified experts (forester or arborist) prior to any construction.

g. Attachment of any signage or fencing to any tree is strictly prohibited.

2. Protection of Heritage Trees

a. Removal of Heritage Trees within City limits is strongly discouraged. A permit to remove a Heritage Tree may be considered on a case-by-case basis by the Architectural Review Board upon a certified arborist documenting the Heritage Tree in question to be:
   - posing an immediate threat to health, safety, or property, and/or
   - dead or diseased, and has been documented as such, and/or
   - currently damaging public property, creating a public safety hazard, and/or
   - currently damaging improvements on private property, and/or
   - interfering with existing public utilities, and/or
   - removed to preserve an existing tree grove of 5 or more tree species of the Heritage Tree in question, and of sound health, as determined by a certified arborist.

3. Tree Replacement

a. A replacement tree is required for each tree removed in accordance with a site development plan submittal from the Approved Tree List.

   i. Replacement ratio

      For every 10 caliper inches removed, one replacement tree from the Approved Tree List should be installed. For example, if one 10-inch caliper tree and one 20-inch caliper tree are removed, three new trees should be planted onsite.

   ii. Replacement tree location

      Replacement trees planted within an easement shall be located so as not to interfere with the use of that easement and shall not be planted under any present/planned overhead utility or above any present/proposed underground utility.
iii. Tree Mitigation Fund

1. If an applicant demonstrates to the satisfaction of the Architectural Review Board a site cannot support the total number of replacement trees required, the applicant will provide a monetary contribution to the Tree Mitigation Fund established to support City-wide tree maintenance and replacement efforts.

2. For residential projects, the applicant will contribute $50.00 per caliper inch of replacement trees that could not be accommodated on the site, not to exceed $1,000.00 per residential site.

3. For non-residential project sites, $50.00 per caliper inch of replacement trees not able to be accommodated on the site will be contributed by the applicant to the Tree Mitigation Fund, supporting City-wide tree maintenance and replacement efforts.

7C - Approved Tree List.

Just as neighborhood compatibility should be considered for architectural design, canopy tree selection should complement the surrounding neighborhood. While each property presents its own unique site conditions, certain tree species have been proven to thrive in our regional climate. The approved tree list heavily favors Missouri native species, while also providing flexibility for the selection of approved cultivars and non-natives appropriate for our region.

**Tree Group:** Deciduous-Large

**Characteristics:** Trees 50 feet or more in height at maturity with a spread approximately equal to or more than their height and trees over 75 feet in height at maturity with a spread less than their height. Size is measured by DBH.

**Minimum size at planting:** 2.5 caliper inch

<table>
<thead>
<tr>
<th>Botanical Name</th>
<th>Common Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acer platanoides</td>
<td>Norway Maple</td>
</tr>
<tr>
<td>Acer rubrum</td>
<td>Red Maple (Missouri native)</td>
</tr>
<tr>
<td>Acer saccharum</td>
<td>Sugar Maple (Missouri native)</td>
</tr>
<tr>
<td>Aesculus</td>
<td>Horsechestnut</td>
</tr>
<tr>
<td>Alnus</td>
<td>Alder</td>
</tr>
<tr>
<td>Carya</td>
<td>Hickory</td>
</tr>
<tr>
<td>Carya ovata</td>
<td>Shagbark Hickory (Missouri native)</td>
</tr>
<tr>
<td>Castanea</td>
<td>Chestnut</td>
</tr>
<tr>
<td>Celtis</td>
<td>Hackberry (Missouri native)</td>
</tr>
<tr>
<td>Gleditsia triacanthos var. inermis</td>
<td>Thornless Honey locust</td>
</tr>
<tr>
<td>Gymnocladus dioica</td>
<td>Kentucky Coffeetree (Missouri native)</td>
</tr>
<tr>
<td>Botanical Name</td>
<td>Common Name</td>
</tr>
<tr>
<td>----------------------------------------</td>
<td>--------------------------------------------------</td>
</tr>
<tr>
<td>Liriodendron tulipifera</td>
<td>Tulip poplar (Missouri native)</td>
</tr>
<tr>
<td>Magnolia acuminata</td>
<td>Cucumber Magnolia</td>
</tr>
<tr>
<td>Metasequoia glyptostroboides</td>
<td>Dawn Redwood</td>
</tr>
<tr>
<td>Platanus x acerifolia</td>
<td>London Planetree</td>
</tr>
<tr>
<td>Platanus occidentalis</td>
<td>American Sycamore (Missouri native)</td>
</tr>
<tr>
<td>Quercus alba</td>
<td>White Oak (Missouri native)</td>
</tr>
<tr>
<td>Quercus bicolor</td>
<td>Swamp White Oak (Missouri native)</td>
</tr>
<tr>
<td>Quercus borealis</td>
<td>Red Oak (Missouri native)</td>
</tr>
<tr>
<td>Quercus coccinea</td>
<td>Scarlet Oak</td>
</tr>
<tr>
<td>Quercus imbricaria</td>
<td>Shingle Oak (Missouri native)</td>
</tr>
<tr>
<td>Quercus macrocarpa</td>
<td>Bur Oak (Missouri native)</td>
</tr>
<tr>
<td>Quercus muehlenbergii</td>
<td>Chinkapin Oak (Missouri native)</td>
</tr>
<tr>
<td>Quercus palustris</td>
<td>Pin Oak (Missouri native)</td>
</tr>
<tr>
<td>Quercus phellos</td>
<td>Willow Oak (Missouri native)</td>
</tr>
<tr>
<td>Quercus robur</td>
<td>English Oak</td>
</tr>
<tr>
<td>Quercus shumardii</td>
<td>Shumard Oak (Missouri native)</td>
</tr>
<tr>
<td>Quercus stellata</td>
<td>Post Oak (Missouri native)</td>
</tr>
<tr>
<td>Quercus velutina</td>
<td>Black Oak</td>
</tr>
<tr>
<td>Taxodium distichum</td>
<td>Bald Cypress (Missouri native)</td>
</tr>
<tr>
<td>Ulmus 'Homestead'</td>
<td>Homestead Elm</td>
</tr>
<tr>
<td>Ulmus parvifolia</td>
<td>Chinese Elm</td>
</tr>
<tr>
<td>Zelkova serrata</td>
<td>Japanese Zelkova</td>
</tr>
</tbody>
</table>

**Tree Group:** Deciduous-Medium  

**Characteristics:** Trees 25 to 50 feet in height at maturity with a spread equal to or greater than their height and trees over 50 feet in height at maturity with a spread less than their height. Size is measured by caliper or DBH.  

**Minimum size at planting:** 2.5 caliper inch
<table>
<thead>
<tr>
<th>Botanical Name</th>
<th>Common Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carpinus betulus</td>
<td>European Hornbeam</td>
</tr>
<tr>
<td>Carpinus caroliniana</td>
<td>American Hornbeam (Missouri native)</td>
</tr>
<tr>
<td>Cercidiphyllum japonicum</td>
<td>Katsura Tree</td>
</tr>
<tr>
<td>Cladrastis kentukea (C. lutea)</td>
<td>American Yellowwood (Missouri native)</td>
</tr>
<tr>
<td>Fagus</td>
<td>Beech</td>
</tr>
<tr>
<td>Ginkgo biloba</td>
<td>Ginkgo (male only)</td>
</tr>
<tr>
<td>Magnolia macrophylla</td>
<td>Bigleaf Magnolia</td>
</tr>
<tr>
<td>Nyssa sylvatica</td>
<td>Black Gum (Missouri native)</td>
</tr>
<tr>
<td>Ostrya virginiana</td>
<td>American Hophornbeam</td>
</tr>
<tr>
<td>Sophora japonica</td>
<td>Japanese Pagoda Tree</td>
</tr>
<tr>
<td>Tilia americana</td>
<td>American Linden (Missouri native)</td>
</tr>
</tbody>
</table>

**Tree Group:** Deciduous-Small and Columnar

**Characteristics:** Trees 50 feet or less in height at maturity with a spread less than one-half of their height. Size is measured by caliper or DBH.

**Minimum size at planting:** 2.5 caliper inch

<table>
<thead>
<tr>
<th>Botanical Name</th>
<th>Common Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acer buergerianum</td>
<td>Trident Maple</td>
</tr>
<tr>
<td>Acer japonicum</td>
<td>Full Moon Maple</td>
</tr>
<tr>
<td>Acer palmatum</td>
<td>Japanese Maple</td>
</tr>
<tr>
<td>Acer pensylvanicum</td>
<td>Striped Maple</td>
</tr>
<tr>
<td>Asminia triloba</td>
<td>Pawpaw (Missouri native)</td>
</tr>
<tr>
<td>Carpinus betulus 'Fastigiata'</td>
<td>Fastigiate European Hornbeam</td>
</tr>
<tr>
<td>Carpinus betulus 'Columnaris'</td>
<td>Columnar European Hornbeam</td>
</tr>
<tr>
<td>Carpinus caroliniana</td>
<td>American Hornbeam/Ironwood</td>
</tr>
<tr>
<td>Sassafras albidum</td>
<td>Common Sassafras (Missouri native)</td>
</tr>
</tbody>
</table>

**Tree Group:** Deciduous-Ornamental

**Characteristics:** Trees that can be maintained at a height of 20 feet or less and have a spread approximately equal to their height. Size is measured by caliper or height. Multi-stem tree size is determined by measuring caliper of the largest stem and adding half the size of each of the other stems together for the total.

**Minimum size at planting:** 2 caliper inch (single stem), 1.5 caliper inch (multi-stem), 8 feet tall (clump).
**Tree Group:** Deciduous-Ornamental

<table>
<thead>
<tr>
<th>Botanical Name</th>
<th>Common Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amelanchier</td>
<td>Serviceberry (Missouri native)</td>
</tr>
<tr>
<td>Cercis canadensis</td>
<td>Eastern redbud (Missouri native)</td>
</tr>
<tr>
<td>Cercis spp</td>
<td>Redbud</td>
</tr>
<tr>
<td>Chionanthus virginicus</td>
<td>White Fringetree (Missouri native)</td>
</tr>
<tr>
<td>Cornus florida</td>
<td>Flowering dogwood (Missouri native)</td>
</tr>
<tr>
<td>Cornus spp</td>
<td>Dogwood</td>
</tr>
<tr>
<td>Cotinus obovatus</td>
<td>American Smoketree (Missouri native)</td>
</tr>
<tr>
<td>Crataegus crusgalli var. inermis</td>
<td>Thornless Hawthorn (Missouri native)</td>
</tr>
<tr>
<td>Crataegus mollis</td>
<td>Downy Hawthorn (Missouri native)</td>
</tr>
<tr>
<td>Crataegus phaenopyrum</td>
<td>Washington Hawthorn (Missouri native)</td>
</tr>
<tr>
<td>Crataegus spp (species with thorns)</td>
<td>English Hawthorn (only in non-pedestrian areas due to thorns)</td>
</tr>
<tr>
<td>Crataegus viridis</td>
<td>Green Hawthorn (Missouri native)</td>
</tr>
<tr>
<td>Magnolia stellate</td>
<td>Star magnolia</td>
</tr>
<tr>
<td>Magnolia virginiana</td>
<td>Sweet Bay Magnolia</td>
</tr>
<tr>
<td>Magnolia x loebneri</td>
<td>Loebner Magnolia</td>
</tr>
<tr>
<td>Magnolia x soulangiana</td>
<td>Saucer magnolia</td>
</tr>
<tr>
<td>Malus spp</td>
<td>Flowering Crabapples</td>
</tr>
<tr>
<td>Prunus spp</td>
<td>Flowering Cherry</td>
</tr>
<tr>
<td>Syringa reticulata</td>
<td>Japanese Tree Lilac</td>
</tr>
<tr>
<td>Viburnum prunifolium</td>
<td>Blackhaw Viburnum (Missouri Native)</td>
</tr>
</tbody>
</table>

**Tree Group:** Evergreen - Large

**Characteristics:** Trees with needled boughs or evergreen/semi-evergreen leaves and foliage, with a mature height of 40 to 80 feet depending upon genus and species. Size is measured by caliper or height.

**Minimum size at planting:** 6 feet tall

**Tree Canopy Coverage:** 500 square feet

<table>
<thead>
<tr>
<th>Botanical Name</th>
<th>Common Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abies spp</td>
<td>Fir</td>
</tr>
<tr>
<td>Chamaecyparis spp</td>
<td>Falsecypress</td>
</tr>
<tr>
<td>Larix spp</td>
<td>Larch</td>
</tr>
<tr>
<td>Metasequoia glyptostroboide</td>
<td>Dawn Redwood</td>
</tr>
</tbody>
</table>
**Tree Group:** Evergreen - Large

- Picea
- Pseudotsuga menziesii

**Tree Group:** Evergreen — Medium

**Characteristics:** Trees with needled boughs or evergreen/semi-evergreen leaves and foliage, with a mature height of 30 to 60 feet depending upon genus and species. Size is measured by caliper or height.

**Minimum size at planting:** 8 feet tall

<table>
<thead>
<tr>
<th>Botanical Name</th>
<th>Common Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ilex opaca</td>
<td>American Holly (Missouri native)</td>
</tr>
<tr>
<td>Juniperus virginiana</td>
<td>Eastern Red Cedar (Missouri Native)</td>
</tr>
<tr>
<td>Juniperus virginiana 'Canaertii'</td>
<td>Canaerti Juniper</td>
</tr>
<tr>
<td>Magnolia grandiflora</td>
<td>Southern Magnolia</td>
</tr>
<tr>
<td>Thuja occidentalis</td>
<td>American Arborvitae</td>
</tr>
<tr>
<td>Thuja orientalis</td>
<td>Oriental Arborvitae</td>
</tr>
<tr>
<td>Tsuga Canadensis</td>
<td>Canada hemlock</td>
</tr>
</tbody>
</table>

**Tree Group:** Evergreen — Small

**Characteristics:** Trees with needled boughs or evergreen/semi-evergreen leaves and foliage, with a mature height of 15 to 25 feet depending upon genus and species. Size is measured by caliper or height.

**Minimum size at planting:** 6 feet tall

<table>
<thead>
<tr>
<th>Botanical Name</th>
<th>Common Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arborvitae spp</td>
<td>Arborvitae</td>
</tr>
<tr>
<td>Ilex x attenuate 'Fosters #2'</td>
<td>Foster's Holly</td>
</tr>
<tr>
<td>Juniperus chinensis varieties</td>
<td>Upright Juniper</td>
</tr>
<tr>
<td>Juniperus scopulorum varieties</td>
<td>Upright Juniper</td>
</tr>
</tbody>
</table>

**7E- Landscape Design**

This section provides a set of guidelines to form an appropriate landscape design composition when providing a complete set of site development plans. Each site provides its own unique challenges, which leads to a wonderful diversity of landscape design styles and approaches to create landscape diversity throughout our community’s neighborhoods.

1. Selection and Installation of Landscape Plantings
All planting materials used shall be of good quality and meet American Association of Nurserymen (AANS) standards for minimum acceptable form, quality and size for species selected, and capable to withstand the seasonal temperature variations of northeastern Illinois, as well as the individual site microclimates. The use of species native to northeastern Illinois shall be encouraged. Size and density of plant material, both at the time of planting and at maturity, are additional criteria that shall be considered when selecting plant material. Where appropriate, the use of drought and salt tolerant plant material is preferred.

2. Installation

All landscaping materials shall be installed in accordance with the current planting procedures established by the AANS. All plant materials shall be free of disease and shall be installed so that soil of sufficient volume, composition and nutrient balance are available to sustain healthy growth.

3. Design Standards

Landscape plans, as described, shall be prepared by a landscape design professional, and evaluated and approved based on the following design criteria:

a. Softening of walls and fences. Plant material shall be placed intermittently against long expanses of building walls, fences, and other barriers to create a softening effect and to help break up long expanses of blank walls with little architectural detail.

b. Planting beds. Planting beds may be mulched with shredded hardwood, granite mulch, river rock, or similar materials. Lava rock is not permitted.

c. Energy conservation. Plant material placement should be designed to reduce the energy consumption needs of the development.

d. In addition, landscaping designs shall take into account and make an effort to implement stormwater treatment and low impact design standards, where appropriate.

e. Deciduous trees, where appropriate, should be placed on the south and west sides of buildings to provide shade from the summer sun.

f. Evergreens and other plant materials should be concentrated on the north and west sides of buildings to dissipate the effect of winter winds.

g. Species diversity. Diversity among required plantings not only provides visual interest but reduces the risk of losing a large population of plants due to disease.

h. No plant material exceeding three (3) feet in height above the elevation of the street pavement is allowed within the sight distance triangle.
Section 8 – Architectural Design Requirements

8A - Guideline Objectives

This section provides applicants with a detailed basis for the ARB’s evaluation of architectural design. It is intended that all projects satisfy the following objectives, which the guidelines support.

A. Provide for compatibility with existing neighborhood characteristics.

B. Respect the Street - The street is the public domain, created by the cooperation and interplay of many private property owners. The characteristics of a street must be understood, illustrated, and respected in order to ensure neighborhood compatibility. Design for the street must include a sensible approach to controlling traffic and property access, parking patterns, and the continuity of walks, driveways, lawns, and landscaping.

C. Respect Private Space - Private space is comprised of yards, driveways, and outdoor functional areas such as patios and decks. The private space of neighboring properties must be respected and preserved by proposed designs. Controlling adjacency, yard patterns, scale, massing of building structures, and landscape massing all contribute to enhancing private space in a neighborhood.

D. Buildings are three dimensional. Regardless of how they are presented in two-dimensional drawings, a building exists and is viewed in three dimensions. From the street, a building will be viewed from a wide range of angles. The front and side facades, and side and rear facades, will always be seen in relation to one another as connected parts of a single whole form. An architectural Style CANNOT be applied to a front facade only, with none of the fine qualities of that design included in the side and rear facades.

E. Architectural Style - Style is simultaneously a matter of context (at the block and street scales) and the personal taste of owners and/or their developers. Style matters do not need to be dictated by the ARB in order to preserve the quality and character of Glendale neighborhoods. Our neighborhoods are very diverse and feature a wide variety of architectural styles. Nevertheless, style matters. Applicants should ensure that their designs present a style cohesively and comprehensively, and that their chosen style is compatible and complementary to the street domain and neighboring properties, especially in matters of scale, massing, detail, and quality of materials.

F. Scale and massing of proposed buildings must be appropriate for neighboring Properties and the street, must comply with measurable limits, and should harmonize rather than contrast with other properties on the street.

G. Details and articulation of form preserve human scale and convey style consistently.

H. Additions should be designed to provide compatibility of style and character with the existing home as remodeled and should preserve beneficial public-private space relationships to neighboring properties. Compatibility can be achieved by controlling
massing, scale, composition, and detail, and is not strictly a matter of stylistic expression.

The following guidelines define specific requirements for various aspects of architectural design that will meet these objectives.

**8B- Driveways, Parking and Garages**

**A. Vehicle Access Patterns and Street Presence**

The location of driveways and car parking should be consistent with Example Houses on the street. Coordinate the curb access of driveways with neighboring lots adjacent and across the street. Design solutions should strive to not interrupt the street pattern. Garage placement will determine the location and impact of driveways on the neighborhood.
B. Driveway Scale and Materials

Driveway width should be the minimum required to support the garage configuration proposed with the project. Wherever possible, narrow the driveway width to minimize its impact on front yards and maintain the pattern of driveways on the street.

1. Provide a minimum of 9 feet in paved width.

2. Maximum driveway width for lots wider than 65 feet:
   i. The driveway width within the front yard setback shall not exceed 25% of the width of the street frontage of a lot, and in no case shall be greater than 18 feet wide.
   ii. Circular drives: The combined width of both entrances shall not exceed 25% of the lot width. Neither entrance shall exceed the maximum 18-foot-wide limit. The impervious front yard area limit shall not be exceeded.

3. Maximum driveway width for lots 65 feet or less:
   i. The driveway for rear entry garages on lots 65 feet wide or less shall not exceed 10 feet wide in the front and side yards.
   ii. The driveway may exceed 25% of the lot width but shall be no greater than 16 feet wide on lots 65 foot wide or less where the driveway accesses a front entry garage, carport, or uncovered car parking space in front of the house.
   iii. Circular driveways are not allowed.

4. Driveway entries shall be located no closer than 30 feet to any intersecting street right-of-way.

5. All paved driveways and turn-around areas shall be located at least 3 feet from any adjacent property line.
   i. The ARB may make an exception to this requirement for lots 65 feet wide and narrower.

6. Acceptable driveway materials include:
   i. Concrete, integrally colored or pattern stamped concrete.
   ii. Permeable, flexible pavements such as concrete unit pavers, vegetative unit paver systems. Clay bricks not designed for pavement applications are not acceptable.
   iii. Asphalt is permitted.
iv. Crushed stone compacted and having a minimum depth of 4 inches is permitted but not preferred. The first 10 feet of driveway extending into the site from the right-of-way line shall not be constructed of crushed stone.

C. Garage Locations

In general, garage locations should be consistent with the pattern seen in Example Houses located on the street and within the block. This will result in positive relationships between houses and outdoor spaces. Where the pattern is for rear yard, detached garages, then new garages should also occur in rear yards. In general, rear garages offer more positive benefits to the quality of public space in the Street. In terms of designing for a high-quality street character, rear yard detached garages are preferred, and front yard, front entry garages are discouraged. However, applicants are encouraged to identify and follow the pattern in the neighborhood and on the street.
D. Low Impact Attached Garages

When an attached garage is located towards the rear of the house, it does not dominate the street front of the residence, and can provide opportunities to create diverse side yard, driveway, and patio spaces. This garage placement can help with managing difficult topography, the positioning of public and private spaces, and preservation of front yard spaces on the Street that are less encumbered by cars. Low impact garages can be used to gain an FAR increase on narrow lots of record. See Chapter 5 for details.

E. Limits on Front Yard, Front Entry Attached Garages

This section applies only to attached residential garages, which have the vehicle entry facing the front yard; and for purposes of this subsection on a corner lot, the front yard shall only be the frontage of least dimension.

Oversized garages, front entry garages and double width garage doors can call negative attention to a home if they become too dominant to the facade. Even more so, a garage that projects beyond the main front building plane towards the street centers attention on the garage and not the home. A priority of the City is to ensure that the garage is not the primary architectural feature of any elevation, and that the garage does not detract from the general streetscape.

1. The width of an attached garage with an entrance facing the front yard shall not exceed 35% of the overall width of the facade of the principal structure (inclusive of the garage).

2. For the purpose of determining garage width as used in (1) above, garage width is defined as that portion of the exterior elevation which, by virtue of front
façade off-set, vehicle door placement, roof lines and/or other exterior architectural treatment, is clearly discernible as space designed for parking of automobiles and similar vehicles.

3. A front entry garage may not be a central feature of the façade and must be asymmetrical to one side or the other of the main living space.

4. The front face of an attached garage shall not project more than seven (7) feet beyond the living space enclosure of the front elevation.

5. No more than two garage doors (single car width) may be installed facing any one street for new residential construction. Should the applicant deem three doors necessary, the applicant must demonstrate that all other possibilities have been examined and every attempt to mitigate the impact must be taken. The following mitigation approaches will be considered:

6. The garage door facades shall not project beyond the residential portions of the main façade.

7. Provide a façade recess separating the doors into a pair of two doors in one façade plane, and a single door in the other façade plane.

8. All proposed garages shall have windows on the sides and rear in order to maintain the residential qualities and scale of the community.

9. Garage doors should be compatible with the structure and reflect a residential character of detail (as opposed to a commercial quality). To help achieve this, it is required that a row of view panels (windows) be included along the top panel of the garage doors. If windows are not provided, the door design shall feature high quality detail and construction or other architectural treatment acceptable to the ARB. Residential quality details can include stile and rail designs, raised panels, or other features compatible with the style of the proposed residence. Flush panel garage doors are not allowed.

10. Front entry and basement level garages will not be allowed unless topographical conditions of the property dictate consideration.

8C- Compatibility with Neighboring Properties

This section sets requirements for ensuring compatibility with the immediate neighboring properties adjacent to a home. While every house must serve the needs of its owners, it will also shape the spaces and character of the houses next-door. The ARB is charged with ensuring that new houses and additions to existing houses do not detract from or unduly impact neighboring properties.
A. Design for Privacy

While privacy cannot be guaranteed from site to site, patterns of public, semi-public, and private spaces in a neighborhood can be respected. Observe and preserve the flow of public to private spaces that are set by Example Houses on the street.

Privacy is best achieved by creating a sense of separation at the property boundaries. Landscaping with trees and hedges can be effective separations. Architectural elements such as trellises, lattice work, low site walls, site furniture, etc. can create effective boundaries. Fences may or may not be a good solution and should be considered in context with the side and rear yard patterns of Example Houses. Often, the sensitive massing and planning of buildings and their outdoor spaces can create the needed levels of privacy.
Deck is exposed to neighbor and intrudes on neighbors yard.

Decks and patios should be kept as close to the ground as possible to avoid overlooking neighbors.

Planting is sensibly located to enhance sense of separation.

Deck is partially tucked behind extension of house to help separate it from neighboring yard.

Avoid windows and second story masses that overlook existing neighboring outdoor spaces.

Avoid windows and second story masses that overlook existing neighboring second floor balconies.

Avoid planning the depth of the house so that second story windows overlook neighboring rear yards.
B. Sunlight and Shadowing

Preserving sunlight and access to sunshine for neighboring homes is encouraged by these guidelines. While sunlight on side yard facades cannot be guaranteed through the application of the setbacks and building height limits presented here, applicants should consider their neighbor’s access to sunlight as seriously as their own desire for it in the design of their own homes. Attention to eave heights, roof form, setbacks, façade massing, and the use and location of either deciduous or evergreen trees should be carefully considered.

C. Massing and Comparative Scale

Massing refers to the physical size and shape of the building volume; and mass follows the functional configuration of space in the home. Elements of building massing should relate to the size and shape of the adjacent Example Houses. Certain measurements of mass are controlled by zoning ordinance limits previously detailed. However, massing is also comparative between houses on the street, and designs proposed for a house should not present massing that is in high contrast to neighboring properties.
The height, scale and proportion of each building should be compatible with its site and neighboring buildings. Respecting the design of Example Houses will ensure compatibility in scale - an important quality of Glendale neighborhoods.

Mass and scale can be reduced by managing story heights within the design. A primary element can incorporate a lower roof-plate height at the exterior wall to reduce the height of perimeter walls. This can reduce mass in a design to be compatible with smaller scale neighboring properties.
8D- Architectural Design

In addition to design for compatibility outlined in Section C, the architectural design of a project should resolve a variety of detailed considerations, including style, unity of expression, balance of scale in the relationship of the elements of the design, and the use of materials. As noted previously, the quality of Glendale neighborhoods is enhanced by the wide variety of architecture that has been created over the years.

A. Style

No single architectural style should be superimposed upon buildings, and each should reflect its own individual style. A home reflects the taste and interests of the homeowner, their architect, and the skill and craft of their builder. Style will therefore be a matter of preference for each applicant and is typically not the basis of approval by the ARB. However, any style expressed and implemented in a design can be a matter of commentary by the ARB. Monotonous design should be avoided; variation of detail and form should be used to provide visual interest and create a scale that is appropriate to the neighborhood and the street. The selection and detailing of materials should be relevant to the architectural style being expressed. Evaluation of the appearance of a project shall be based on the quality of its design and relationship to surroundings. Additions should relate to the existing building in scale, details, colors, and material. Compatibility will be valued over conformity concerning style and architectural design.

Variance in style from a monolithically styled neighborhood isn’t necessarily discouraged, however, the ARB will be reviewing drastic variations in style more critically to ensure proposal has been developed thoughtfully and thoroughly as an enhancement to the neighborhood rather than a distraction and/or detriment to it.

B. Unity of Expression

Every design should be undertaken with an understanding that buildings are perceived in three dimensions, and that the style and expression presented to the Street should extend in some way the to the entire house. Each façade should be part of a cohesive whole – all sides should have a balance of architectural features. Detail, scale and massing, materials, and the design and composition of elements such as windows, doors, and trim will all be considered to ensure that each facade conveys a consistent character within the context of the design. This is not to say that there is no hierarchy between the expression presented towards the public realm and that presented to semi-public and private areas.

Design solutions should reflect consideration of both interior planning and exterior form in a collective, holistic approach. Placement of exterior windows and doors that occur solely as a result of interior planning considerations typically appear as an afterthought in the building exterior. This should be avoided; designs should consider both the exterior composition and the interior functional needs. Placement of window and door openings should convey order and balance rather than appear as an arbitrary or random
afterthought. Formal and informal expression and composition can coexist when attention to design and detailing is exercised throughout.

Examples: Designs with Unity of Expression

In the examples shown above, the elements of style are expressed throughout the whole of the structure. Solutions for massing, form, scale, openings, trim, materials, and color extend from the front facades to the side facades, so that the design as a whole is perceived as presenting one style of architecture. A good design pays equal attention to all four building facades.

C. Scale, Proportion, and Balance

1. Scale relationships are important within a design, just as they are important with respect to a neighboring property. Building components expressed in the design should have proportions and sizes that are appropriate to the architecture being developed. The composition and size of both primary and secondary elements in the design should be governed by proportion and balance. Building components such as facades, roofs, projected bays, porches, windows, and doors are important elements of scale, and can transform a boring and inappropriate box into a compatible architectural design.
2. A project exhibits balance if the parts of the design are equally distributed to create a sense of stability. Both physical and visual balance is important to the design. The quality and detail of composition and fenestration should be consistent on all facades. In a balanced design, Primary and Secondary forms and elements are established and controlled to present a clear hierarchy within the design.

3. Entries and porches should be consistent with the architecture of the residence. Porches should not be the tallest element of the façade. They should instead support access at a human scale and ideally provide functional space at the entrance that fits the pattern in the neighborhood.

4. Massing of facades strongly affects the perceived scale of a house or structure. To control scale and balance, take note of the following.

   i. There should be a clearly identifiable primary mass.

   ii. The primary mass should be compatible with the mass and scale of other homes on the street.

   iii. Multi-layer setbacks with more than three wall planes are discouraged.
iv. More than three roof lines in the composition of the front façade are discouraged.

v. Roof slopes should not vary significantly from Example Houses in the neighborhood having the same style. Use dormers, porches and porticoes to control mass and scale.

5. The composition of openings – doors, windows, louver, and vents – in the facades of a house is an important determinant of scale. Every attempt shall be taken to create order and pattern in the placement and arrangement of windows, doors, and other compositional elements. Minor informalities in the composition of side and rear facades may be unavoidable and may also have a precedence set by Example Houses. However, neighboring property owners constantly see the sides and back of your home. Good architecture includes design features and articulation – walls that include elements of architectural interest, not blank walls that impose an uncomfortable and dominating scale upon neighboring properties.
D. Entrance Doors

Doors and windows should reflect the style of the architecture being developed. Their size and style should be consistently expressed on all exterior walls. Example Houses may include a range of opening sizes that functionally fit the spaces they are serving. A good design will harmonize varied opening sizes by judicious composition, attention to alignment, and the detailing of standing and running trim incorporated into the design. In certain situations, a large single opening may be warranted by view or interior room use. However, avoid monumentality that is often created by the over-use of large openings throughout a design. Opening patterns should be true to the architecture of the design. If the design is compatible with the neighborhood, a compatible opening pattern should follow naturally.

The design of entrance doors should take into consideration their location and be used within the plan of the house. Main entrance doors benefit from glass view panels, stile and rail detailing, side-light windows, transoms, accent colors, and architectural trim. Secondary doors may be treated more modestly. The scale and detailing of doors should be managed to maintain a balanced design. Doors should be made of high-quality materials and have a protective finish.

Main Entrance Door Examples
E. Windows

Windows should be selected and designed to carry out the style of the architecture in all facades. Their material, color and configuration should be consistent, and where variation is needed for function and scale, such variety should reflect a thematic pattern in the design, and not be randomly occurring. The sill should be an appropriate material consistent with the façade material and should project beyond the face of the material below to function properly. Muntins, where employed to create divided glass lites sashes, should appear on the exterior of the glass. Shutters should be one-half the width of the sash they are adjacent to and be detailed as if they are functional whether they are fixed or operable. The composition of windows in the facades need not be symmetrical, but an orderly pattern is preferred, and randomness is discouraged. While some Example Houses will have random or informal window arrangements on side facades, good design will implement minor patterns of alignment and size to overcome a disorderly result.

F. Trim

Trim details are critical to establishing a human scale within a design. The detailing of trim should be consistent with both the architectural style and the materials used in façade construction. Trim used for facias, soffits and coves, banding, corners, and material changes (known as running trim) should be used to help strengthen the composition and scale of facades and should reflect a high level of artisanship associated with whatever architecture style is being developed. The trim around openings (standing trim) is an important detail element; trim should have the right proportion within the design. Avoid trims that are out of proportion to the opening. Column enclosure trim and porch railings should be used to express style consistently and add a human scale to entrances and porches. Take note of neighborhood patterns in the detailing of trim. A house with no design for trim elements often appears monumental and out of scale.

G. Awnings, Canopies

Awnings and canopies, where employed, should fit the character of the building, reinforce the architectural style, and be consistent with neighborhood patterns for their use. Awnings and canopies that are applied to otherwise flat facades are discouraged. They should be part of the overall massing and detailing of the building design.

H. Decks, Porches

Decks and porches should be designed to fit into the style of the architecture. Avoid creating decks that look “tacked on” to a house as an afterthought. Integrate the details of deck skirting, stairs, railings, roofs, and eaves into the material and design details of the facades.
I. Materials

Glendale wants to see buildings constructed in its Neighborhoods that feature durable and lasting materials. Materials and their texture, patterns, and colors should be selected to be compatible with those used in the Example Houses on their street and block. A unique or divergent material may be acceptable, provided that its use enhances other design patterns in the neighborhood, is appropriate to the architectural style being developed, and adds quality and durability to the proposed building. Materials should be selected for suitability to the type of building and the design in which they are used and for harmony with adjoining buildings.

The ARB emphasizes an honest use of materials; a material should not be applied two-dimensionally as paint unless it IS paint. Material use should be consistent on all facades, and should reinforce the volume, massing and composition of surfaces in a three-dimensional design approach. Where materials change in-plane on a façade, the appropriate running trim should be employed as suitable to the materials in use. Where a material used on a front façade is to be transitioned and discontinued on other facades, care must be taken to integrate the material change into the three-dimensional design of the building. The Unity of the design must be preserved. **A material cannot change at an exterior building corner.**

Materials should extend around building corners and changes should be made where primary and/or secondary masses intersect.

Material colors and patterns provide visual interest, but too many changes in material or color can be distracting and detract from the design. Limit façade materials and their textures to three variations. Material changes should respond to changes in function or the need to manage mass and scale by modulating the exterior of the building. Use accent colors to draw attention to important features of the design.

1. Façade materials

All proposed materials will be evaluated based on quality and appropriateness to architectural style and character. Materials should be selected for suitability to the type of building and the design in which they are used and for harmony with
materials used in adjoining buildings. Acceptable materials include the following. The list is not exhaustive, as innovative materials may always be considered.

i. Masonry: Clay brick, integrally colored concrete masonry, natural stone, cast stone veneer, thin-set stone veneer, thin set tile products.

ii. Cement stucco, integrally colored or painted.

iii. E.I.F.S. synthetic stucco. The EIFS water management system is the only EIFS system to be allowed.

iv. Siding – configurations include horizontal clap board, panel and batten, panel and reveal, board and batten, shakes or shingle: Materials shall be natural wood (painted, stained, or prefinished), engineered hardwood, cement fiber, polymer composite.

The following materials are not acceptable and would require special consideration by the ARB within the context of an exceptional architectural design or as a limited use material.

i. Vinyl Siding – Exception: Vinyl siding may be considered for additions to existing houses having vinyl siding as the primary material, or to match an existing design with a specific application of vinyl siding (i.e.: vinyl siding infill in a roof gable end).

ii. Metal siding, industrial or agricultural metal panel siding, such as ribbed or corrugated panels, commercial insulating, and composite metal panels.

iii. Glazed aluminum curtain wall or storefront systems as a primary façade enclosure material.

iv. Untreated, flat veneer plywood panels.

v. Asphalt shingles – Exception: vertical surfaces of mansard roofs. In this application, shingles shall be high quality, textured, architectural grade shingles only.

2. Colors: Façade materials should feature colors that are harmonious and visually compatible with neighboring buildings; this includes trim and accent colors.

3. Concrete: Smooth, plain concrete shall not be a primary façade material. Textured concrete developed with form liners, board forming, hammering, aggregate exposure, etc. may be considered as a façade material where proposed as an integral feature of an architectural design. Exposed concrete brick ledges and foundation walls below primary facade materials should be limited to no more than twelve inches (12”) above grade. The distance between siding and the finished grade shall be no less than four (4) inches. Exposed concrete shall be painted.
4. Roof Materials

Use high quality materials for roofs. Architectural grade, heavy weight fiberglass-asphalt shingles are very common. Other acceptable roof materials include metal that is prefinished, natural slate and tile, wooden shakes and shingles. Sheet roofing products should be used only on low-slope roofs that are not visible from the street.

5 Fireplaces, Chimneys:

Fireplaces and chimneys projecting beyond the façade should be supported down to the foundation and enclosed with masonry (stone or brick).

J. Additions

Projects that propose additions to existing houses should follow the guidelines outlined above. Style, unity of expression, compatible scale, balance, and proportions, and consistent use of materials are all important factors in designing an addition that is compatible with both the neighborhood and the existing building that is to be expanded. Care should be taken to preserve original, and period specific details used to build the existing house and convey its style. Some additions may propose a transformative architectural style. In such cases, ensure that the transformation is complete, and that the new architecture fits into the street and neighborhood as described in the guidelines. A great addition may present a contrast in architectural style as compared to the original building. Such designs must be carefully coordinated in their details and use of materials to ensure that the resulting combination of styles is not jarring and does not detract from the neighborhood.
Section 9 – Submittals

Applications to the Architectural Review Board shall include the following content and be submitted to the city administrator.

1. Submit a completed Application Form.

2. Existing Conditions Survey + Site Plan

   a) Minimum scale: 1”=20’
   
   b) This plan shall show all site improvements existing on the subject property, including buildings, paved areas, lawns, landscaping.
   
   c) All existing trees and landscape plant areas shall be shown and identified.
   
   d) Existing servicing utilities shall be shown.
   
   e) The first-floor elevation of existing buildings shall be noted.

3. Site Demolition Plan

   a) Minimum scale: 1”=20’
   
   b) Demolition scope of work may be shown on the Existing Conditions Plan, provided the drawing is presented legibly with notes and graphics to clearly represent improvements to be removed.

4. Architectural Floor Plans

   a) Minimum scale 1/4”=1’. Reduced size exhibits shall be limited to not more than 50%.
   
   b) Show all levels, including basements whether finished or unfinished.
   
   c) Show all detached structures, such as rear yard garages.
   
   d) The plans shall be fully dimensioned and indicate all room functions but need not be construction document plans.
   
   e) Include a Roof Plan, accurately showing the geometry proposed, roof slopes shall be noted, gutter and downspout drainage shall be shown and coordinated with the Site Grading and Drainage Plan.

5. Aerial Photo Plan

   a) Submit a plan that superimposes the proposed Site Geometric Plan on an aerial photo of the proposed site. This will allow the ARB to evaluate the proposed development in context with the street and the block and assess issues of fit within the existing context. The proposed buildings shall be shaded black, proposed pavements shall be shaded grey. The aerial photo shall include the extent of the
entire street to the nearest street intersections, the full properties on both sides of
the street, and the full properties aligned to the rear boundary of the site so that the
Block containing the property is fully visible. This drawing can be an 11x17 exhibit,
and need not be drawn to scale, but should show the relationship of new
development to existing properties accurately.

6. Proposed Site Plan – Geometrics, Grading and Drainage

a) Minimum scale: 1’=10’. Half size reductions are not permitted.

b) This drawing should convey legibly all aspects of the site plan layout.

c) Show all site improvements, existing to remain and proposed. Include buildings,
walls, retaining walls, patios, pavement, walks, and ground based equipment. Key
setting out dimensions shall be provided. The proposed buildings and structures
shall be dimensioned to the property lines. Label and note all materials for paving
and walks.

d) Adjacent neighboring properties to each side and rear of the subject property shall
be shown. Include the full site for side adjoining parcels with buildings, pavements,
and sidewalks shown accurately for reference and comparison to the proposed
building and site improvements. Show rear adjoining parcels to the extent of
building facades on the rear neighbor’s lot but show no less than approximately 50%
of rear adjoining parcels. Data for adjoining property geometrics may be taken from
County GIS mapping data, aerial photo data, Google Earth data, or other on-line
digital image services, and do not need to be surveyed.

e) Show property boundaries, set back lines, easements, and right of way lines.

f) Show location of proposed site servicing utility lines and physical utility items such as
streetlight and power poles, manholes, inlets, etc.

g) Graphically show existing and proposed trees so they can be seen in relation to the
main geometric features of the site.

h) Show existing and proposed contours with a 1-foot contour interval.

i) Show downspout locations serving roof areas of the proposed buildings. Coordinate
with the architectural plans and elevations.

j) Show how downspout drainage flow is collected and piped or conveyed to drainage
discharge points.

k) Show and note over-land drainage discharge patterns.

l) Show drainage swales, detention basins and flow direction.
m) Show drainage detention structures such as gravel pits, trench drains, flow well structures, etc. and their overflow discharge points. Show all piping into drainage detention structures.

n) Provide complete drainage differential discharge calculations showing the engineered basis of pre and post development storm water flow off the site. No development shall result in an increase of storm water discharge volume from the site.

o) Show Erosion Control measures and tree protection barriers.

p) Items “h” through “o” above may be presented as a separate Grading and Drainage Plan, provided that the Site Geometrics Plan graphics are used as a background.

q) Locate and identify all existing trees.

r) Provide a schedule indicating tree species, size, graded condition, estimated value, and status of the tree in the development plan whether it is existing to remain or scheduled to be removed.

s) The plan shall be prepared using a certified arborist evaluation of the existing trees.

7. Pervious and Impervious Area Coverage Plan

a) The plan shall illustrate all impervious improvements and diagram the impervious areas in comparison to pervious areas such as lawns, landscape beds, and pervious pavements. Types of site area coverage shall be indicated by shading and/or patterns with a complete legend of materials.

b) Areas of each type of coverage shall be measured and shown in a schedule, provide calculations of pervious and impervious areas and the ratio of impervious coverage.

8. Landscape Design Submittal Requirements

This section’s sets forth standard requirements to fulfill the landscape design component of site development. To be considered for approval, all projects must have the following components to satisfy the landscape design requirement:

a. Arborist Report

   i. Title Page

      1. Site address

      2. Arborist name and certification number

      3. Date of inspection

   ii. Cover Letter - Purpose of report and for whom
iii. Tree Protection Plan (TPP)

1. Project title listing project name, owner name and name of firm or individual preparing the plan.

2. North arrow, graphic and written scale.

3. Scaled base plan using current information from the site development plan depicting existing and proposed grades, location of all improvements, existing and proposed utilities, and sewers.

4. Graphic depiction of all existing trees to remain and to be removed including location, types and DBH size (Diameter of the trunk at breast height, measured at 4.5 ft. above natural ground level) of 4-inches or greater.

5. Graphic depiction of the accurate drip line canopy showing the extent of the Critical Root Zones (CRZ) and Structural Root Zones (SRZ).

6. Graphic depiction of the proposed Tree Protection Zones (TPZ) and location of tree protection fencing.

7. Identification of any areas of invasive plant removals recommended for removal.

iv. Tree Report Summary

1. Common and Scientific name of the tree

2. Estimated height.

3. DBH (Diameter of the trunk at breast height, measured at 4.5 ft. above natural ground level)

4. Comments on the vitality, structure and form of the tree

5. Tree number (to correspond with the TPP)

6. Recommended action to be taken.

7. Reason for proposing removal or trimming of tree.

8. Assessment of value and/or significance

b. Landscape Plan

i. Minimum scale 1/8” = 1′-0”.
ii. Use the Site Geometric Plan as the background for the Landscape Plan.

iii. Title block

1. Project title or project name
2. Owner name
3. Name of firm or individual preparing the plan.

iv. Landscape Planting Plan

1. Current information from the site development plan.
2. Existing and proposed grades.
3. Final arrangements of all buildings and structures.
4. Location of all lot lines, building setbacks, and easements as depicted on the site development plan.
5. North arrow.
6. Graphic and written scale
7. Graphic legend depicting existing vegetation and proposed conditions.
8. Location of all improvements such as walks, patios, driveways, and walls shown on the site development plan.
9. Location of all existing and proposed utilities and sewers
10. Graphic depiction of all existing trees including location, types and caliper inch as measured at a Diameter Breast Height (DBH) of 4.5 feet above grade.
11. Graphic depiction of the accurate drip line canopy of all existing trees showing the extent of the critical root zone.
12. Tabulation of all existing trees to be saved or preserved, removed, or impacted.
13. Graphic depiction and plant schedule of all proposed trees to be planted including location, species and caliper inch as measured at a DBH of 4.5 feet above grade.
14. Graphic depiction and plant schedule of all proposed landscape plantings, shrubs, lawn areas and groundcovers. Botanical and common names should be listed on plans.
15. Planting details.

16. Graphic depiction indicating limits of ground disturbance and all associated areas of lawn to be seeded or sodded upon project completion.

9. FAR Illustration Plans
   a. Minimum scale: 1/8”=1'-0”
   b. Present a diagrammatic illustration of the plan areas as measured in CAD-based takeoff or as calculated by dimensions. Note the measured or calculated area of each floor plan level, show the boundary of each measured area graphically, and indicate how each area is assessed for the FAR calculation (i.e., some areas are assessed at either 50% or 200%, or may be excluded as defined by the Zoning Code definitions for area measuring).
   c. All floor areas shall be accounted for and classified as defined by the zoning code (i.e.: heated living space, enclosed porches, attached or detached garage, two story living space, etc).

10. Color Photos of Adjoining Properties
   a. Color photos of existing property and neighboring properties. Include photos of rear yard and neighboring rear yards.

11. Composite Street Elevation
   a. Provide a colored elevation of the street façade at ¼”=1’ scale superimposed on a photographic montage showing the adjoining neighboring properties to each side of the property. The exhibit shall accurately depict the height, width, materials, style, roof slopes, and massing of the proposed design in relation to the neighboring houses and shall accurately show the relationship of the first-floor level of each existing neighbor in comparison to the proposed first floor level of the design.
   b. The ARB may request a three-dimensional perspective rendering on a case-by-case basis.

12. Building Elevations
   a. Minimum scale ¼”=1’. Reduced size exhibits shall be limited to not more than 50%.
   b. Provide building elevations of all principal facades, and all facades of detached structures.
   c. All building materials shall be noted.
   d. The line of grade shall be accurately shown and coordinated with the Grading Plan.
e. The “Grade Plane” or Average Grade Elevation as defined in the Guidelines Section 5 shall be graphically indicated on the elevation drawings. Basements shall be noted as a Story Below Grade or a Building Story based on the Average Grade Line.

f. The roof height shall be dimensioned on each elevation, from the Average Grade Elevation (Grade Plane) to the Average Roof Height, as defined in the Guidelines Section 5.

13. Colored Illustration
   a. A 3-dimensional rendering or a colored building elevation of the principal street façade.
   b. For additions, illustrate the most prominent façade whether side or rear.

14. Materials and Samples
   a. Provide a photo sample board accurately depicting all materials and their colors employed in the building exterior. Printed color product data is acceptable.
   b. The applicant is encouraged to bring physical samples of the materials to the ARB meeting.
Section 10 – Modifications and Enforcement

In the event that a modification to the submitted and approved design becomes necessary during the design development or construction of the proposed project, the following procedures shall be followed.

1. **Submittal of Modifications Required:** Changes to an approved design that affect the exterior appearance in ANY way must be submitted proactively by the Applicant to the City Administrator for ARB review and approval. Changes include, but are not limited to, such characteristics as the physical configuration of the building, details of standing and running trim, material selections in kind, color, texture, or extent of application, substitutions of plant species and size, and changes to grading and drainage design.

2. It is the Applicant’s responsibility to be forthright and open about intended changes in design, and to honestly disclose to the City the proposed modification and the reason for the requested change. Material shortages, delivery delays, change in the owner’s functional program, and discovery of adverse field conditions are examples of legitimate reasons for change. There may be other reasons that the ARB would consider reasonable. Failure to fund the project fully, cost overruns, or a shortfall in the owner’s budget are not considered to be reasons to justify changes to an approved design. Applicants are advised to carefully consider the size, scope, and cost of their project in full prior to submittal to the City for ARB approval. Your submittal provides BINDING documentation of the intended design and should not be undertaken lightly without serious intent to execute the project as proposed.

3. The City of Glendale reserves the right of inspection for compliance with submitted and ARB approved design documents, and subsequently submitted construction documents that have necessarily been approved for building permit by St. Louis County.

4. The City Administrator and the ARB shall have the authority to approve or deny design modifications, whether submitted during completion of Construction Documents, discovered by examination of construction documents submitted to St. Louis County, submitted during construction phase activity as a substitution request, or discovered by inspection of completed or in-progress construction work.

5. **Remedies**
   
   A. The City may issue an Enforcement Order to the Applicant notifying them of denial of a submitted or discovered design modification and directing the Applicant to implement the design as submitted and approved. The Order may direct the Applicant to confirm to the City in writing their receipt of the Enforcement Order, and their intent to comply with or appeal the order.
   
   B. The Applicant may appeal the Enforcement Order to the Board of Alderman.
C. The City reserves the right to withhold the Occupancy Permit in the event that an unapproved modification is discovered, and is not remedied by the Applicant, or approved by the Board of Alderman upon appeal.
Section 11 – Public Notifications

A. Notification of Application to Adjoining Property Owners

The property owners adjoining the lot(s) for which an application for review has been submitted to the Architectural Review Board will be notified by City staff of said application via a letter sent through the United States Postal Service. Said letter shall include the time, date, and place of the ARB meeting at which public comment on the relevant application will be taken.

B. Public Notification of Approved Project

After an application has been approved and demolition is complete (if applicable), applicants with approved projects shall install a temporary informational sign on the lot where a project has been approved. Installation of the informational sign must be completed no later than 7 days prior to the commencement of work on an approved project and shall remain until the project has received its final inspection. Informational signs shall contain the address of the project, the home builder or contractor’s name and telephone number, and a color rendering of the home or project. The sign shall be dimensioned in the manner shown below: