should match the historic mortar in color, texture, and tooling. It should be softer than the brick and should be as soft as or softer than the historic mortar.

In repointing, it is important to use mortar appropriate to the structure. Lime mortar was used until late in the nineteenth century when it was replaced by lime-cement mortars. If portland cement is the appropriate repointing material, it should be mixed to contain a higher concentration of lime than normally indicated. The increased lime content insures plasticity, an important characteristic for replacement mortar. If the new material is stiffer than the original it may not be able to accommodate building movement and temperature fluctuations. This may result in the masonry’s cracking or a breaking of the bond between masonry and mortar. The color and texture of repointing mortars are matched to the original by carefully duplicating the colors of the binders (cement and lime) and the aggregate (sand).

To insure building stability, repointing should be a part of the overall rehabilitation process. After cleaning and repointing, periodic maintenance should be performed to prevent further decay.

Additional Sources:

PAINTING

Painting is an integral part of preservation. It involves many considerations. When is painting appropriate? Is the wear of paint indicative of other issues which must be addressed prior to repainting? What constitutes proper surface preparation? How can a structure’s original colors be determined? What factors should be considered in selecting a color scheme? These questions are addressed in the following sections.

Paint is generally inappropriate for masonry. Only if a brick surface was originally painted or if it shows signs of advanced decay is painting masonry indicated.

Deteriorated paint surfaces are unsightly and are often indicative of other problems. Moisture penetration causes paint failure by blistering and peeling. It is therefore necessary for a wall to be adequately vented to allow vapor in a wall cavity to migrate to the outside without damaging painted surfaces. It is also critical to verify the condition of a structure’s roof, gutters and
downspouts to make certain that water is not penetrating the wall cavity, but instead is being successfully diverted from the structure.

Blistering and peeling may also be the result of painting a wood surface while it was too wet or in direct sunlight. After the underlying problem is identified and solved, blistering paint should be removed, the surface spackled and repainted.

The majority of paint problems are related to surface preparation. Careful surface preparation is essential to a successful paint job. Layers of old paint should be removed only where they are excessively thick, hiding architectural details, or where they are peeling and cracking, no longer protecting the surface. Applying new paint over flaking or deteriorated surfaces will not stabilize conditions, but only make them worse. Since all paint removal methods run the risk of damaging the original fabric, however, they should only be employed where paint removal is absolutely necessary. The surface must be washed with soap and water or tri-sodium phosphate to remove all oil and grim. Any weathered wood must be sanded and spot primed.

Paint checking, the short breaks in paint which follow the grain on the wood, is the result of the paint losing its elasticity and becoming brittle. Loose paint should be scraped and the affected areas spackled prior to repainting. Alligatoring, or cross grain cracking, is caused by the failure of one coat of paint to bond with the previous layer. This may indicate deteriorated paint below or the incompatibility of paints, such as is sometimes the case between latex and oil paints. It is therefore best to repaint a surface with the same type of paint as the previous coat. The problem of alligatoring is best addressed by the removal of all previous coats of paint.

PAINT REMOVAL

Four basic methods of paint removal are: hand scraping, sanding, burning with a heat gun or plate, and applying chemical paint removers. Each method is appropriate for particular cases. Hand scraping, which can be tedious, makes sense for small areas. Sanding, which removes part of the actual surface along with the old layers of paint, is often appropriate for large unadorned areas. Burning paint off can be very effective. However, it risks scorching or burning the wood and must not be used near cornices due to the danger of fire. Though more expensive, chemical removers are probably the safest and easiest method of paint removal. They are appropriate for both plain and ornamental surfaces.

SELECTING AN APPROPRIATE PAINT

Oil and water based paints have been in use since the eighteenth century. Composed of various oils, white lead and coloring pigments, oil paints traditionally were applied to interior trim and exterior surfaces. Water based paints were a variation on simple whitewash, a mixture of water and slaked lime. The addition of glue, eggwhite or zinc white and a shading pigment to the whitewash formed a variety of distemper paints. Although water based paints were traditionally used for interior surfaces, whitewash was often used to coat
fences and out buildings.

Today, although the same two categories of paint exist, the actual paints are vastly different. Oil based or alkyd paints as we know them today were first introduced in the 1930s. They are different from original oil paints because they are based on synthetic materials rather than natural oil. Although slightly more difficult to work with, these highly durable, color fast, oil based or alkyd paints are generally preferable for older buildings, as some of the oil in the paint migrates into the wood and helps to maintain its moisture resistance.

Modern water based paints are latex paints, a suspension of acrylic or vinyl resins, dispersed in water. These relatively inexpensive paints apply easily and dry quickly. Latex paints "breathe" more easily, and allow moisture to escape, thereby combating the peeling and blistering problems.

SELECTING A COLOR SCHEME

There are basically two methods of determining a structure’s historically appropriate colors. The first involves a physical investigation or analysis of the building’s painted areas to determine the original colors. The alternative requires a design sensitivity combined with a knowledge of period colors.

ORIGINAL PAINT COLORS

Where precise colors are to be accurately restored, paint analysis is required. Tools used for this examination are an exacto knife or surgical scalpel, removable lights and a magnifying glass. The knife or scalpel is used to make a diagonal cut, exposing all the layers of paint down to the unfinished wood or masonry. The layers are then examined with the magnifying glass and light.

Exposed layers of paint may not reveal the entire history of a building; original layers may have been removed to make way for new coats of paint. In addition, old siding may have faded significantly from its original hue. It is best to engage an expert to take the paint samples, as well as to interpret the results and suggest a matching color.

PERIOD PAINT COLORS

For most structures, a familiarity with period paint colors and knowledge of basic color principles are required to make a color selection appropriate to the period of the house and the streetscape of which it is a part.

As important as selecting the right colors is their placement on the house's architectural elements. Warm shades which appear to advance toward the eye can be used to highlight areas of architectural interest, such as trim, while cool shades which appear to recede can be employed to minimize a large expanse of wall.

A structure’s exterior materials can also give a clue to appropriate colors. An area of natural materials such as stone, brick, natural shingles or slate might serve as the basis for a color scheme.

Roofs, when visible, represent integral parts of a color scheme. Natural slate roofs possess a variety of subtle tones including gray, green, blue and pink. They are sometimes arranged in polychromatic patterns.
Similarly, wood shingle roofs have their own hue and naturally weather to a gray brown. Copper roofs also weather naturally and develop a protective green coating. Each home's individual characteristics should always combine with its style to form an appropriate color scheme.

Free counseling on color and placement is offered both by the Historic Preservation Commission and the Haddonfield Preservation Society. Today there are excellent sources for choosing appropriate paint colors. Two paint charts that illustrate combinations of historic colors are "100 Years of Exterior Colors of Historic Philadelphia," by Finmaren and Haley. Two additional paint charts are "Old Sturbridge Paint Colors," by Stub & Paint Co., and "Colonial Williamsburg Paint Colors," by Martin Senour Paints.

Additional Sources:

- Paint Colors Research and Restoration, Penelope Harbison Batchelder, Nashville, Tenn.: American Association for State and Local History, 1988.
ENTRANCES & PORCHES

ENTRANCES are the visual focus of a house and with their fine craftsmanship contribute significantly to a structure's character. The entry consists of the porch and front doorway. Porches range from simple projections over the front door to continuous structures spanning the entire front facade, sometimes wrapping around the house. The doorway consists of the main door, its sidelights, transom and trim.

If components are missing, extant materials can often serve as the prototype for replacements. Porch posts and columns, railings and balusters as well as steps and flooring all combine to create a porch's unique character. Patching and repairing, using epoxies, is often a cost effective alternative to replacement. Although more costly than repair, original fabric can be matched through custom millwork.

If the front door has been replaced, try to locate and repair it as needed. If the door cannot be located or is beyond repair, its replacement should be of similar proportions, materials, details, and glass area as the original. Original hardware is almost always salvageable. As the dominant element on the door, it should be reused. Aluminum storm and screen doors rarely are in keeping with an older building's character. They do little to improve the thermal efficiency of a house. If they must be used, however, these doors should be simple and blend with the overall entrance, and should be painted an appropriate color.

Since a house's historic character is conveyed by its front porch and entry, changes of original design and materials can result in loss of a historic property's value.

A house's entry is perhaps the single most significant indicator of style. Colonial style structures feature simple doors and transoms often sheltered by pent roof projections. Their doors, offset by simple trim, feature six panels.

Federal structures feature a few steps which set off their attenuated entries which are capped by fanlight transoms and often articulated by a weblike tracery. Greek Revival structures feature classically inspired porticoes supported by classical columns. Their doorways are broad, often featuring panelled double doors offset by simple surrounds.

The first floor of Italianate and French Second Empire houses are usually sheltered by continuous front porches articulated by square columns or posts which are capped by elaborate, curvilinear brackets. The doorway, located at the center is recessed and often features double doors decorated with rich moldings and circular or oval motifs. The entries of Gothic Revival houses are articulated by highly decorated one story porches, either in line with the central gable or extending their full width. These porches are supported by octagonal columns, which are often connected by flattened Gothic arches or brackets that mimic arches, and often capped by curvilinear standing seam metal roofs which are reminiscent of canopies.

Stick Style structures are typically shielded by long entry porches supported by stick-like posts, often featuring diagonal struts or brackets. Their doorways often feature double doors incised with elaborate geometric patterns.

Fanciful, classically derived verandas or large porches often featuring their own irregular roof forms add to the variety of Queen Anne compositions. Colonial Revival structures feature broad wooden front porches composed of loosely classical elements.
A HOUSE'S trim or ornamental detail is its most distinctive feature. Trim consists of individual elements such as columns or pilasters and related elements which articulate entries, window surrounds which offset glazing, corner boards which visually frame a facade, and bargeboards or brackets which decorate the eaves, highlighting a structure's roofline. Trim evolved from sparingly applied hand crafted ornament in the Colonial, Federal and Greek revival eras to more elaborate machine cut extravaganzas of the Victorian age.

The cornice, one of a building's most prominent elements, consists of a series of individual trim components such as brackets, dentils and frieze moldings which are combined at the junction of the roof and wall to unify and crown a facade. They evolved from simple trim to elaborate overhanging projections. Featuring intricate detailing which draws attention, cornices often add to a building's visual interest while contributing to its style.

The removal of a house's trim diminishes its financial and visual value. It is relatively easy to preserve and maintain trim by refastening loose members and duplicating an occasional missing piece. Often, seemingly complex profiles can be built-up from simple ones. Damaged or partially rotted members featuring complex details can be preserved and reconditioned with epoxy resins which can be used to fill, build-up, shape and repair details.

Colonial era structures are trimmed with plain members and capped by simple cornices. Federal style houses bear a variety of delicate attenuated ornamental trim based loosely on classical motifs including columns, pilasters, urns, swags and fan shaped motifs. Their cornices remain simple affairs which barely project from the wall plane. Greek Revival structures are characterized by an absence of ornament but are capped by cornices featuring broad, classically inspired friezes often containing knee windows.

Italianate houses are dominated by broad overhanging eaves supported by elaborately carved scrolled brackets which add substantial depth and interest to their facades. The closely related French Second Empire style structures are capped by steeply pitched highly decorative slate mansard roofs which are in turn punctuated by elaborately trimmed dormer windows.

Gothic Revival structures executed in wood are trimmed at the edge of their picturesque roofs with lacy wooden bargeboards carved in patterns reminiscent of Gothic tracery. Inventive intricate trim, either incised or applied, further enlivens their facades. A gable end, often featuring a pointed window, is offset by decorative trim and patterned shingles.

The trim associated with Stick Style structures is expressed directly on the wall surface ranging from clapboards and vertical siding to shingles in a variety of patterns, all contained within a framework of applied wooden members.

Queen Anne style houses sport ornately detailed, complex facades which feature delicate classical details such as swags and dentil courses providing a counterpoint to their rugged wall materials. Details associated with the Colonial Revival are oversized, exaggerated in proportion, often appearing as caricatures when compared side by side with their prototypes. Crowning pediments and window surrounds are fashioned from wood trim featuring large, pronounced profiles.
WINDOWS

WINDOWS contribute significantly to a building's character. Their size, material and type reflect their structure's style and therefore should be retained and preserved in any remodelling.

Wood double hung windows prevail in Haddonfield's houses. They are made up of two sash which travel vertically within a wood frame. The size and number of panes of glass in each sash, defined by muntins, vary depending on a building's style. As glass production techniques improved and panes became larger, windows evolved from the small six over six pane sash to large one over one windows.

Colonial style structures feature small double hung window sash each divided into six panes by stout muntins. Window openings in Federal and Greek Revival style houses are larger, more vertically oriented and feature larger panes of six over six sash separated by narrower muntins. Greek Revival structures are topped by knee windows at the attic level.

The tall two over two windows gracing Italianate style structures, perhaps more than any other element, set the style apart from its predecessors. The fenestration of French Second Empire structures is similar to that of Italianate houses with mansard dormer windows added to the repertoire.

Wall dormers housing pointed, often arched, two over two windows are a hallmark of the Gothic Revival. In Stick Style structures, oversized, vertically oriented two over two windows fill the areas defined by timber framework.

Queen Anne edifices feature a wide variety of window forms, which contribute to their dynamic quality; these range from simple rectilinear openings to a variety of arched forms. Elegant three part windows, often in a Palladian motif, create the focal point of a Queen Anne structure's facade. Large one over one plate glass glazes the majority of the surrounding windows with the upper sash sometimes consisting of small stained glass panes. In contrast, the fenestration of Colonial Revival houses marks a return to multi-paned double hung sash of an enlarged size and scale with nine over nine windows often housed within projecting bays.

MAINTENANCE

Most wood windows can be easily restored. Window sash can be repaired with exterior wood glue, wood dowels or metal mending plates. Caulking and glazing of sash is a part of routine maintenance. Sills, which must always slope toward the exterior to shed water, must be kept well painted to avoid deterioration. Epoxies can be used to repair damaged sills. Frames remain serviceable as long as care is taken to avoid build-up of paint layers in their stiles, along which the sash travel. Window cords or chains connect sash to counterweights housed within the frame. These weights can be reached either through access panels in the stiles or through simple carpentry repair to be fastened to new sash cord or chain if required. A well maintained wood double hung window can last virtually indefinitely.

Efforts should be made to retain special fenestration such as curved, etched, leaded and stained glass windows. In extreme cases when it is necessary to replace window frames, original window openings
SHUTTERS & BLINDS

Historically, exterior wood shutters and blinds at once served functional and ornamental purposes. Panelled shutters employed during the Colonial, Federal and Greek Revival eras served to reduce heat loss and curb drafts. Blinds, with their louvers, either fixed or operable, were introduced in the Federal era and persisted through the Queen Anne. They sheltered the house while allowing air to circulate and soft light to enter.

Visually, both panelled shutters and louvered blinds serve to enliven a facade. They articulate their structure’s window’s providing a balance between the solid wall and void window opening.

Broken shutters can usually be repaired. A build-up of paint commonly prevents them from functioning properly and it is therefore appropriate to strip shutters. It is critical to protect the end grain of a shutter’s stiles either by keeping them well painted or by covering them with neat flashing. Broken or missing louvers can be replaced as can be missing hardware such as pull rings, bar latches, hooks, hinges and shutter dogs. Sagging can often be eliminated by tightening a shutter’s hinges.

Since not all houses originally featured shutters, it is important to determine if shutters are an original part of a building’s fabric. Window surrounds usually contain evidence of shutter hardware. Replacement shutters and blinds are readily available. They can be found in a wide range of pre-made sizes or may be custom milled.

Because of their visual importance, shutters should be operable. They should therefore be large

STORM WINDOWS

A window’s thermal efficiency can be improved by the application of weather stripping. If storm windows are desired and the original frames did not accommodate them, such as in the Colonial, Federal and Greek Revival eras, or if windows constitute an elaborate design element, acrylic units mounted inside with magnetic frames should be used. If exterior storm and screen windows were originally used, such as in the Victorian era, wood framed storm windows and screens are appropriate. If aluminum must be used, the frames should be painted to be consistent with the house’s color scheme. Further, since a window’s thermal efficiency is a function of the air space between glazing, original sash and traditional storm windows, with their large separation, offer inherent energy advantages. If however, the sash are deteriorated beyond repair, they may be replaced with new sash which matches the original and contains double glazing. It is critical that muntins be integral and that their profile appear on the exterior.

should be retained. Changing an opening’s size, by blocking it down, radically alters a building’s appearance and is often not necessary to accommodate stock windows. When stock windows do not fit a structure’s openings, custom wood windows can be fabricated from stock components at little additional cost. The use of substitute window frame materials such as aluminum and vinyl should be avoided.
enough both in height and width to, if closed, cover the window they flank. Proper hardware should be used, and shutters should not be fastened to the wall, but rather hung from hinges and held in place with shutter dogs. Vinyl and aluminum shutters and blinds are inoperable, inappropriate substitutes and should not be used.

Additional Sources:
FOUNTAINATIONS

A FOUNDATION is the base on which a house rests. In addition to its key structural role, a building's foundation contributes to its appearance. Historic foundation materials include randomly laid fieldstone, dressed stone and brick.

The most critical aspect of a structure's preservation is the care and maintenance of its foundation. It is also an area in which obtaining professional assistance is of prime importance. If discovered and treated early, foundation problems can be simply solved at minimal expense. Failure to address foundation deterioration in its early stages, however, can result in serious, costly damage.

Foundation cracks are not in themselves cause for alarm. They may merely be the result of a structure's initial settlement. Repointing masonry, as discussed in the Facade Materials Section, should be all that is required to prevent future deterioration. Recent, reappearing foundation cracks, or cracks in interior plasterwork, however, may be indicative of continued foundation movement. At its most extreme, this shifting may also be manifest by a crooked chimney, a sagging roof ridge, or out of square window and door openings. Professional assistance should be sought prior to correcting this more serious type of foundation movement.

Dampness or the presence of water is not only damaging to the foundation but can lead to harmful insect infestations and deterioration of the structural framing above. If excessive moisture is penetrating a basement wall below grade level, the foundation should be checked from the exterior. Water should be diverted away from the edge of a house by downspouts that lead directly to drain tiles which carry surface run off away or are flared toward splash blocks which rest on a surface sloping away from the basement wall. Repointing mortar joints combined with correcting drainage problems may eliminate the moisture problem. Water conditions, however, may have caused the wall to deteriorate necessitating the application of a waterproof casting to its exterior, below grade surface. This will require excavation at the house's perimeter. Installation of an underground drainage system should be considered in conjunction with this work. Such treatments should be undertaken only in consultation with a professional. Coating the interior face of masonry foundation walls with a waterproof material may appear to solve problems of moisture penetration. In fact, however, water will continue to enter the wall from the outside and move upward. This phenomenon, known as rising damp, can cause serious damage since it can proceed undetected.

The foundations of Colonial style structures are seldom articulated and often consist of brick work extending directly to grade. In contrast to their Colonial predecessors, Federal style structures rest on raised rubble stone bases, while Greek Revival buildings rest on subtly articulated brick bases.

Italianate, French Second Empire and Gothic Revival style structures rest on stone bases which are typically shielded at the front elevation by the structure's front porch. Stick Style houses rest on substantial masonry bases which are clearly articulated from the timber elevations above. Typically, rugged stone articulates the base of Queen Anne structures, offsetting it from the brick, clapboard and/or decorative shingles which clad the stories above.
CHIMNEYS

CHIMNEYS exhaust smoke and fumes from a house’s fireplace and furnace. Extending above the roofline, they also often act as a design element, relating to a structure’s style.

Resting on independent foundations, chimneys are almost always brick on the outside while the flues that line them and carry the fire’s hot exhaust are made of mortar, tile, metal or ceramic pipe. Chimneys are terminated by caps which prevent the entry of rain or snow and improve their draft. Chimneys are on occasion topped by pots, cylindrical pipes of brick or terra cotta, which, while highly decorative, also serve to extend the chimney and increase its draft.

Chimneys can be the source of leaks if their caps or base flashing are deteriorated. Moisture penetration can also be the result of deteriorated or cracked mortar joints. A chimney’s brick, which is exposed to great extremes in temperature, must be preserved as other masonry is. It should not be painted or covered with stucco. If repointing is required, it should be done in deteriorated areas only, and the new mortar should match the historic mortar in color, texture and tooling. These potential problem areas should be inspected annually and repaired as discussed in the flashing and masonry sections of this guide.

Unused chimneys should be repaired and capped. They should not be removed since, whether or not they play a decorative role, they may be reactivated as required at a later time. If a chimney must be restored, it should be appropriate to its building’s style and match the original in material, massing, proportion and detail.

Chimney flues must be kept clean and free of blockages which might cause fires. If a mortar lined chimney is showing signs of deterioration, it should be relined with metal or ceramic pipe, maintaining as close to the original size as possible. Any voids between the original flue and the replacement liner must be filled to direct escaping heat and fumes up the chimney. A properly installed flue liner will protect the outside brick and mortar, insuring a safely operating chimney.

While some chimneys are purely functional roof appurtenances, many are flamboyant displays of a structure’s design and should be preserved. Federal style houses often featured paired chimneys that were dominant extensions of these houses’ powerful side walls. Stick and Queen Anne style houses are characterized by boldly projecting chimneys, appearing almost too heavy, featuring elaborately corbelled brickwork.
FENCES help to frame their house's yards and add variety to the streetscape. They also delineate public and private space. A successful fence will complement both its street and its house.

Wood sheathed houses can be enhanced by simple wooden fences. A traditional picket fence can be made using two by four inch wood stock for the rails and one by three inch stock for the pickets. Posts are required at about six foot intervals. Pickets can be enlivened by sawing or drilling out geometric patterns near their tops.

A more substantial type of wood fence results from substituting broader boards or planks for pickets, carving out profiles along the entire length of these boards, articulating fence post tops with molding profiles, and other ornaments such as balls and finials, and clearly expressing both top and bottom rails with heavily profiled members.

Wrought or cast iron fences also enhance the appearance of both house and streetscape. Wrought iron fences are characterized by interlacing "U" shapes often punctuated by arrowhead motifs. Cast iron fences, fashioned from iron formed in hand-made molds, are generally heavier and more ornate than their wrought counterparts. Both types of iron fences exhibit fine detail and craftsmanship. They are especially appropriate to offset Victorian era houses.

Wood fences are straightforward to construct and maintain. Sections can easily be replaced or repaired as needed. These fences should be constructed with galvanized nails to avoid rust. Their paint should match either the body or trim color of the house, or should be white.

Iron fences also require routine maintenance. Care must be taken to prevent rust and remove rust spots.

Sanding and painting with a metal primer and paint must be undertaken about every five years.

Chain link and other wire mesh fences are inappropriate to Haddonfield's historic district. Split rail and basketweave wood fences often associated with rural or industrial landscapes are also inappropriate. Use of concrete and concrete masonry units for fences should also be avoided. It is important that a fence harmonize with its house and setting.
ARCHAEOLOGY

The Haddonfield of a century ago can easily be recovered. The Sanborn Fire Insurance surveys and old photographs depict the stores, dwellings, work shops and stables of the 19th-century town. But what of the previous century during which Haddonfield evolved from a farm hamlet to a village? We have documents, some important buildings, and little else — with one major exception: archaeology. Beneath lawns and parking lots, foundations mark the former locations of blacksmiths shops, and barns, while post holes trace the lost outlines of kitchen gardens and barnyards. Antique garbage from kitchens, dining rooms, and workshops record the diet, living standards, and craft skills of early residents.

Archaeological remains are curable but fragile. Undisturbed, they can survive for millennia, but a backhoe can destroy a colonial archaeological site in minutes. Equally damaging is a sloppy or unfinished archaeological excavaton. Only the archaeologist’s report makes him less destructive than a bulldozer.

So if you suspect that your property has an archaeological site, treat it with tender loving care. Research the history of your lot before you decide on the location of your new swimming pool. If you have to replace a water line or fuel tank, pull the old one out and put the new one in the same ditch or hole. If there are so many pot sherds or brick bats in the ground that your grass or flowers are unhappy, spread new topsoil on top and save the site for future historians.
HOW TO OBTAIN A CERTIFICATE OF APPROPRIATENESS

Ordinary repairs to structures in the Historic District such as minor carpentry, downspouts and gutters, brick step repairs, etc. can be made without waiting for review if the work costs less than $500 and the material is replaced exactly to match the original material. The work should be documented with before and after photographs submitted to the Zoning Officer after the completion of the work. However, if you are in doubt about a planned change, consult the Zoning Officer in Borough Hall who can quickly determine whether a Certificate of Appropriateness is required. Remember that roofing, siding, and any alteration in the exterior appearance of the structure require a Certificate. If proposed changes entail extensive structural renovation, a registered architect or engineer may be required.

STEP 1: Pick up an “Application for Certificate of Appropriateness” from the Zoning Officer in Borough Hall. You can usually fill it out there. Although a licensed contractor may obtain the application and permit, ultimate responsibility for obtaining a permit rests with the owner of the property.

STEP 2: When you have completed the form, the Zoning Officer will determine the additional information necessary for the application to be complete. All applications should include photographs of the structure showing the area to be repaired and a written description of the work. Descriptions may be in the form of a builder’s estimate or an architect’s scope of work. In some cases other information may be required, such as a description of the replacement materials (these may be in the form of architect’s technical specification or manufacturer’s literature), plans, elevations, and site plan. Additions may also require variances or other approvals by the Planning or Zoning Boards. Applications and supporting materials must be submitted with 20 copies. The Planning Board meets the first Tuesday of each month. The Historic Preservation Commission meets on the Wednesday 13 days before the Planning Board. Applications must be received 14 days prior to the Commissions meeting to appear on that month’s agenda.

STEP 3: It is helpful for you to attend the Historic Preservation Commission’s meeting when your application is reviewed to discuss the work with the Commission. Commission members are knowledgeable about historic preservation and building repair, and can help you with the permit process. Commission members visit the site before the meeting to be familiar with the property and the work required. After reviewing the application, the Commission will prepare a written report making recommendations to the Planning Board. A copy will be made available to you prior to the Planning Board meeting.

STEP 4: Attend the Planning Board meeting when your application is reviewed to discuss the work and the Commission’s recommendations. A member of the Commission will also be present to discuss the work. The Planning Board has the authority to approve or deny the application.

STEP 5: Pick up your Building Permit from the Zoning Officer in Borough Hall any time after the Certificate of Appropriateness is approved.
VI. Additional Information

LOCAL ORGANIZATIONS

- Haddonfield Preservation Society
 Box 192
 Haddonfield, NJ 08033
 (609) 429-5486
 Joan Aiken, Executive Director

clearing house of preservation information; sponsors house tours and walking tours of the Historic District and workshops on preservation subjects; provides consultation on preservation techniques and historic paint colors;

- Haddonfield Historical Society
 343 King's Highway East
 Haddonfield, NJ 08033
 (609) 429-7375

sponsors programs on historical subjects; historical library and house museum are open to the public; excellent source for local historical research; archives contain historical photographs, maps, and papers of important historical figures;

- Haddonfield Public Library
 Haddon Avenue and Tanner Streets
 Haddonfield, NJ 08033
 (609) 429-1304
 Doug Rauschenberger, Librarian

excellent source for local historical research; collection contains local histories, historical photographs, and maps;

- Camden County Historical Society
 Park Blvd. and Euclid Avenue
 Camden, NJ 08103
 (609) 964-3333
 Margaret H. Weatherly, Director

sponsors programs on historical subjects; historical library and house museum are open to the public; excellent source for local historical research; collection contains local histories, historical photographs, and maps;

STATE ORGANIZATIONS

- Office of New Jersey Heritage
 CN404
 Trenton, NJ 08625
 (609) 292-2023
 Nancy L. Zerbe, Deputy SHPO

New Jersey State Historic Preservation Office (SHPO); source of information on a variety of subjects including preservation techniques, preservation planning, and nomination of properties the State and National Registers of Historic Places, and certification of rehabilitation for investment tax credits; sponsors conferences on historic preservation subjects; source for the copies of Preservation Briefs, one of the best sources of reliable preservation techniques;

- Preservation New Jersey
 180 Township Line Road
 Belle Mead, NJ 08502
 (201) 359-4557
 Kitty Shuler, Director

state-wide non-profit historic preservation organization; provides preservation advocacy and acts as information source for local organizations and interested individuals; publishes bi-monthly newsletter, presents conferences, technical workshops and seminars throughout the state;

NATIONAL ORGANIZATIONS

- National Trust for Historic Preservation
 Mid-Atlantic Regional Office
 6401 Germantown Ave.
 Philadelphia, PA 19144
 (215) 438-2886
the only national private non-profit organization whose responsibility is to enhance public awareness of our nation's heritage of significant buildings, sites and objects; the Trust is headquartered in Washington, DC and maintains six regional offices. The regional offices offer technical assistance, financial assistance under various grant programs, make field visits, and act as contacts for the preservationists in their region. The Trust publishes a monthly newspaper, bi-monthly magazine, a newsletter, and maintains an excellent list of preservation publications;

PERIODICALS
- *Fine Homebuilding*, bimonthly, Taunton Press, P.O. Box 355, Newton, Conn. 06470
- *Old-House Journal*, monthly, Old-House Journal Corporation, 69A Seventh Avenue, Brooklyn, N.Y. 11217

PUBLICATIONS
GLOSSARY

arch
a curved construction of wedge shaped stones or bricks which spans an opening and supports the weight above it. (see flat arch, jack arch, segmental arch and semi-circular arch)

attic
the upper level of a building, not of full ceiling height, directly beneath the roof.

baluster
one of a series of short, vertical, often vase shaped members used to support a stair or porch handrail. forming a balustrade.

balustrade
a railing consisting of a series of balusters.

banister
corruption of baluster

bargeboard
a board, usually highly decorated, which hangs from the projecting edge of a roof.

bay
a regularly repeated unit of an elevation or facade that consists of the space between columns or is defined by a given number of windows per floor.

bay window
a projecting window that forms an extension to the floor space of the internal rooms; usually extends to ground level. (see oriel window)

belt course
a horizontal band across an elevation or around a building marking a division in the wall plane.

blind
an assemblage of adjustable louvers used to control the admission of light, usually flanking windows in pairs and hinged at the jamb.

box cornice
a hollow built up cornice usually made up of boards and moldings.

bracket
a small projecting piece of stone or other material, often in the form of a scroll, which supports or appears to support eaves, shelves, or other overhangs.

capital
the head or top decorated member of a column or pilaster.

Classical Order
derived from Greek and Roman architecture, a column with its base, shaft, capital and entablature having standardized details and proportions, according to one of the five canonized modes: Doric, Tuscan, Ionic, Corinthian, or Composite.
clapboard boards, thicker on one edge than on the other, which overlap horizontally to form a weatherproof exterior wall surface.

column a slender upright structural member.
corbel a bracket or projecting decorative element usually produced by extending successive courses of masonry beyond the wall surface.
cornice the projecting ornamental molding that caps a wall. In classical architecture, the uppermost section of the entablature.

cresting a decorated ornamental finish along the top of a wall or roof.
dentil course a series of small projecting blocks creating a molding or cornice in classical entablatures.
detail a small, often intricate architectural feature such as a cornice’s bracket, dentil block, etc.
dormer windows an upright window that projects from a sloping roof.
double hung window a window having two sashes, one sliding vertically over the other.
drip mold (see hood mold)
eaves the underside of a sloping roof which projects beyond the wall.
element a fundamental component of a building’s facade: a door, window, cornice, etc.
elevation the exterior facade of a structure; also the head on view or drawing of a building’s exterior face.
entablature a part of a building or classical order resting on the column capital; consists of an architrave, frieze, and cornice.

fagade the face or elevation of a building, usually its front.
fascia a projecting flat horizontal member or molding; forms the trim of a flat roof or a pitched roof; also part of a classical entablature.
flat arch an arch whose wedge-shaped stones or bricks are set in a straight line; also called a jack arch. (see arch)
gable end the triangular upper portion of a wall at the end of a pitched roof.
gable roof a ridged, double pitched or sloping roof.
gambrel roof a ridged roof with two slopes on either side.
hood mold a large projecting molding over a window or door, originally designed to direct water away from the opening; also called a drip mold.
incised decoration an engraved ornamentation, cut or engraved into a structure’s surface.
jack arch (see flat arch)
A horizontal bracket, usually in the form of an arch, is a component of a structure. A keystone is the wedge-shaped top or center member of an arch. A horizontal attic window just below the roof line, a small horizontal attic window just below the roof line, a heavy vertical wood member between windows, or doors repeated in a close series. A mullion window glass, often stained or leaded glass, is designed to exclude rain, but admit light. A mullion is a partition between panes of glass. A horizontal opening over a door or window, designed to exclude rain, is called a horizontal attic window. A horizontal opening over a door or window, designed to exclude rain, is called a horizontal attic window. A horizontal opening over a door or window, designed to exclude rain, is called a horizontal attic window. A horizontal opening over a door or window, designed to exclude rain, is called a horizontal attic window.
pyramid roof
a pavilion roof, or a roof sloped equally on all four sides.

quatrefoil
a four lobed figure.

quoins
a series of stones, bricks, or wood panels ornamenting the outside corner of a wall.

reconstruction
(see replication)

rehabilitation
the process of returning a property to a state of utility, while retaining as many of its original characteristics as possible.

renovation
(see rehabilitation)

replication
the accurate recreation of a vanished, or irreplaceably damaged structure, or part thereof; the new construction recreates the building's exact form and detail as they appeared at some point in history.

restoration
the process of making a structure's forms and details appear as they did at a particular point in time, often the date of construction. This sometimes involves removing later additions and replacing missing original work.

ridge
the horizontal line at the junction of the upper edges of two sloping roof surfaces.

roof
(see gable roof, gambrel roof, mansard roof, pyramid roof, and shed roof)

sash
the window framework in which the glass panes are set.

segmental arch
an arch whose profile or radius includes less than a semicircle. (see arch)

semi-circular arch
an arch whose profile or radius is a half circle the diameter of which equals the opening width. (see arch)

shutter
a panelled cover usually flanking windows in pairs and hinged at the jamb.

sheathing
an exterior covering of boards or other surfacing applied to the structure's frame.

shed roof
a gently pitched, almost flat roof with only one slope.

sidelight
a vertical area of fixed glass on either side of a door or window.

sill
the horizontal bottom members of a window, door or other opening; also a structure's horizontal bottom framing member resting on the foundation.

six-over-six window
(see pane)

spindles
slender elaborately turned wood dowels or rods often used in screens and porch trim.

stabilization
the essential maintenance of a deteriorated building as it exists at present, establishing structural stability and a weather resistant enclosure.

stained glass
glass that has been colored, usually by baking pigments or fusing metallic oxides to the surface; stained glass is often leaded.

streetscape
the overall facade, not of a single structure, but of the many buildings which define the street.

surround
an encircling border or decorative frame, usually at windows or doors

swag
carved ornament in the form of a cloth draped over supports, or in the form of a garland of fruits and flowers.
transom
a horizontal opening (or bar) over a
door or window. (see overlight)

trim
the decorative framing of openings
and other features on a facade.

turret
a small slender tower.

verandah
a covered porch or balcony on a
building's exterior. (see porch)

vernacular
a regional form or adaptation of an
architectural style.

wall dormer
dormer created by the upward
extension of a wall and a breaking of
the roof line.

water table
a projecting horizontal ledge, intended
to prevent water from running down
the face of a wall's lower section.

window
(see bay window, dormer window,
double hung window, oriel window;
also see window parts: mullion,
muntin, pane, sash, six over six.)